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Preliminaries (to refresh dormant neurons...)

[1 Asystem is linear as long as superposition holds.

[1 Scaling of a single input is included, since scaling may al-
ways be viewed as the result of summing.

[0 The response to an impulse then yields sufficient informa-
tion to deduce the response to any arbitrary input.

1 All real systems may be made to act nonlinearly for some in-
puts (e.g., the response to 1ImV may differ in shape and odor
from the response to a gigavolt).

[0 Linearity thus holds only over some restricted range of excita-
tions, in practice.
[J A system is time-invariant if the only result of time-
shifting any input is to shift the response by precisely
the same amount.

1 Ifasystemis LTI, it may be shown that excitation at f
produces a response only at f.
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Preliminaries

[1 Ifasystemis LTV, itis no longer generally true that an
excitation at f produces a response at the same frequen-

cy.

[0 Superposition still holds, however, so the response to the
sum of two inputs may be deduced from the response to
each.

[1 If asystem is nonlinear, the response may also contain
spectral components not present in the excitation.

[1 Dependency of output on combination of inputs not neces-
sarily linear; this difference can be used as a basis for deter-

mining whether spectral shaping is due to time-variation or
nonlinearity.

A Phase Noise Tutorial -

Tom Lee, Stanford University Center for Integrated Systems



http://smirc.stanford.edu/papers/Orals98s-ali.pdf Email: hajimiri@smirc.stanford.edu

Oscillator with Input Noise Sources
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Phase Noise In RF Applications
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The desired signal is buried under the phase noise of an adjacent strong channel.
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Units of Phase Noise

L{Aw}

[dBc/ H2 13 (-30dB/dec)
f

Sy(w), 1
= (-20dB/dec)
f

1/f° log(Aw)=log(w-wy)

Measured in dB below carrier per unit bandwidth.
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Substrate and Supply Noise
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Phase Noise: General Considerations

[1 Consider simple oscillator: RLC + noiseless negative R:

V< ) %ec EL

-
4kTG

Noisaless
Energy
Restorer

[1 Can show that noise-to-signal power ratio is

2
N Vn KT kT
> V2_ Estored QI:)dis.s
Sig

[J Negative-R must cancel the tank loss in steady state.

[1 Noise current sees pure LC impedance.
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General Considerations

[1 Practical oscillators operate in one of two regimes:

[1 Current-limited, in which the oscillation amplitude is linear-
ly proportional to lpjzsRiank:

[0 Voltage-limited, in which the oscillation amplitude is large-
ly iIndependent of bias current.

Vosc 4

Current-limited

Voltage-limited

-
Ibia\s
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General Considerations

[]

In the voltage-limited regime, increases in bias current
do not increase carrier power.

[0 Additional dissipation only increases noise power, so CNR
degrades (decreases).

In the current-limited regime, increases in bias current
Increase signal power faster than noise power.

[ CNR increases until boundary with voltage-limited region
IS approached.

Best oscillator performance is typically achieved near
the transition point between current- and voltage-limit-
ed modes of operation.
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Oscillator Phase Noise

[1 An expression for noise-to-carrier ratio reveals important
optimization objectives:

— 2 Ld Ld
U VearrierM hiasRtank™= Pcarrier M (Ipiag)"Rtank in the current-lim-
ited regime of oscillation.

0 Piee = KT/C =KkTw°L, if dominated by tank loss.

0 So, N/C pt KTW2L /(I 19*Reank to an approximation.

[1 Generally want to minimize L/R to optimize oscillator for a
given oscillation frequency and power consumption.

(1 This result contradicts much published advice, which advocates
maximizing tank inductance.

[1 N/C is important, but also need to know noise spectrum.

Short Course: CMOS RF IC Design [—
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General Considerations

[1 Assuming all noise comes from tank loss, PSD of tank
voltage Is given approximately by

2 2 2 2
V I = W

n.nz° 4kTGDl 0 5
Af - Af 2QA(m §2QA

[1 Noise power spllts evenly between phase and ampli-
tude domains. Then, we finally have

2 2
\VAZA\| D W E
LAw =10dog " :10dog 2kT §2Q§ .
00
V -
sig

0 Funny units: Some dBc/hertz at a certain offset frequency.
Example: -110dBc/Hz @ 600kHz offset, at 1.8GHz.
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Simple LTI Model vs. Reality

[1 Previous expression doesn’t quite describe real phase

noise spectra:

L (Aw)h

Reality

log Aw

Tom Lee, Stanford University Center for Integrated Systems
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eeson Model

[1 Leeson provided empirical fix to remove discrepancies:
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Factor F accounts for excess noise in all regions.

Awy 3 accounts for 1/f3 region close to carrier.

First additive factor of 1 accounts for noise floor.

O O 0O

Problem: Can’t compute these fudge factors a priori;
they are basically post hoc fitting parameters.

[]

Need to revisit unstated assumptions.

[1 Isan oscillator truly a linear, time-invariant system?
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Oscillators Are Time-Variant Systems

[N
5(t—1)
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Vout

A AV
/\ /\ Impulse injected at the peak of amplitude.
| : .
t

VOU'[

/\ AV /\ Impulse injected at zero crossing.

Even for an ideal LC oscillator, the phase response is Time Variant.
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Amplitude Restoring Mechanism

i(t) A
3(t—T1)
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Once Introduced, phase error persists indefinitely.
Non-linearity quenches amplitude changes over time.

Limit A dv
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Phase Impulse Response

The phase impulse response of an arbitrary oscillator is a time varying step.

i1)

i(t) @(t)
T —_— h(p(t, 1) —»

0 T t 0 T

~Y

The unit impulse response is:
(0w 1)

h(p(t, 1) = u(t—r)

max

[(x) is a dimensionless function periodic in 21t describing how much

phase change results from applying an impulse at time: ¢t = T%[
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Impulse Sensitivity Function (ISF)

LC Oscillator Ring Oscillator

Voutt)
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The ISF quantifies the sensitivity of every point in the waveform to perturbations.
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Phase Response to an Arbitrary Source

i(t) I (wgT) o(t)
— h(p(t, 1) = u(t—t) =<
max
Superposition Integral:
00 t
o(t) = I h (t,1)i(t)dt = I I'((oor)i(r)dT
o ¢ qmax_oo
Equivalent representation:
r(th) Ideal Phase
Integration Modulation
w(t) o(1) V(1)

—>®—> [ ] cosleogt + ()] |—a
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Phase Noise Due to White Noise

LTV system Nonlinear system

O ] g 2 cofagtrom)

2

i
For a white input noise current with the spectral density of _”_f
A

The phase noise sideband power below carrier at an offset of Aw Is:

2 2
re o i “/nf
L{dw} = -2 00—
Amax 20w

[ 'ms IS the rms value of the ISF.
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ISF Decomposition

ISF is a periodic function:

M(wet) = co+ z C,CoS(NwyT +86,)
n=1
Phase can be written as:

t 00 t

{COJ'I'(T)O'T+ Z CnIi(T)COS(nQ)OT)dT
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Noise Contributions from nwy,
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Effect of Symmetry

1 2Tt
Co = _ZTTI (x)dx
. . . 0
Symmetric rise and fall time Asymmetric rise and fall time
Vour(1) Vour(l)
L "t L "t
[ (wt) [ (wt)

|
vV |

The dc value of the ISF is governed by rise and fall time symmetry, and

controls the contribution of low frequency noise to the phase noise.
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1/f3 Corner of Phase Noise Spectrum

The 1/f3 corner of phase noise is NOT the same as 1/f corner of device noise

W1 W Iog(o&ooo)§>

7 f

By designing for a symmetric waveform, the performance
degradation due to low frequency noise can be minimized.
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Effect of Rise and Fall Time Symmetry

Sidebands Due to Low Frequency Injection

00T 1 2 3 4 5
— Analytical Expression
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Effect of Symmetry

e

i(t) ;
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>
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A low frequency current induces a frequency change for the asymmetric waveform.
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Injection at Integer Multiples of f,
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Sideband Power vs. Injection Current

Sideband Power below Carrier (dBc)
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Symmetric vs. Asymmetric Ring Oscillator

-35 ~

Symmetric, nl
Symmetric, n4
Asymmetric, nl
Asymmetric, n4

Sideband Power below Carrier (dBc)
N
o1
I

X O O +

100kHz 1MHz

Frequency of Injection (Hz)



http://smirc.stanford.edu/papers/Orals98s-ali.pdf Email: hajimiri@smirc.stanford.edu

Time Varying Current in Colpitts Oscillator
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Cyclostationary Properties, Time Domain

a(wyt)

Noise Modulating Function (NMF)
[ (wyT)

dt

qmax

t
@) = [in(0)

I ho(t)

0((oooT)I'(oooT)OIT

t
= I 1ho(T)

qmax

Effective ISF:
Moff(¥) = T(x) (x)

i (1) = i o(t) a(wyt)

A cyclostationary source can be modeled as stationary with a new ISF.
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Colpitts Oscillator
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Plus c¢a change...

[ To exploit cyclostationary effects, arrange to supply energy
to the tank impulsively, where the ISF is a minimum.

[1 This idea is actually very old; mechanical clocks use an es-
capement to deliver energy from a spring, to a pendulum in
impulses.

L Coupled to
-«
pendulum

Driven I
by spring

Short Course: Phase Noise in Oscillators —

T. Lee, Stanford University Center for Integrated Systems



Phase Noise

(1 In the best implementations, impulses are delivered at
or near the pendulum’s velocity maxima. The escape-
ment thus restores energy without disturbing the period
of oscillation. [Airy, 1826]

I See: www.database.com/~lemur/dmh-airy-1826.html (my
thanks to Byron Blanchard for finding this reference.)

(1 Similarly, the optimal moments for an LC oscillator are
near the voltage maxima.

A Phase Noise Tutorial -
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A Symmetric LC Oscillator

vdd
1
e N e
L/2 L/2
Adjust ratios [ 0 —C
. C
to fine tune ¢ || I\
symmetry

.t >iI:|<EIWN .

Uses the same current twice for high transconductance.
[Also appears in: J.Craninckx, et al, Proceedings of CICC 97.]




Tank Voltage Amplitude
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Assuming fast switching of the
differential pair, the current can
be approximated as:
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Tank Voltage Amplitude

it

ltail

Assuming rectangular waveform:

4

Vimax = T

ItaiI Req

“ltaif
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U t
Effectively, the current waveform

IS closer to sinusoidal, therefore:
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“Current limited” mode
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Modes of Amplitude Limiting

Tank voltage swing (volt)

3.5

3.0

2.5

2.0

1.5

1.0

0.5

Complementary cross-coupled LC oscillator

 Current Limited

Voltage Limited

2 4 6 8 10 12 14 16 18 20
Tail current (mA)



Major Noise Sources

Vbp
T —_
2 2
'p1 | p2
2 " L
Vig s
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Different noise sources affect
phase noise differently.

S DN

i
W
oxgt Ves V1)

= 4kTyuC

>

Valid in both long and short
channel regimes.

Inductor Noise:

V2
n _
E = 4kTrS



Equivalent Circuit for Differential Sources
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Waveform and ISF

Node Voltage (V)

ISF

= Viail y

i NMOS ISF |
Tall ISF
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Effect of Taill Current Source

Vbp For the tail current source, only
low frequency noise and noise

M In the vicinity of even harmonics
L

5 of the tail current source affect
— c [ phase noise.
>II<

1 A

s
A@itan @ o R
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Die Photo of the Complementary Oscillator
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Phase Noise vs. Offset from Carrier
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Complementary Cross-Coupled LC Oscillator

fo=1.8GHz, 0.25um Process (Vpp =3V)

Phase noise at 600KHz offset (dBc/Hz)

112 :
ol -+ -+ Measurement - vdd

__ T2, =05 I
16y — Simulated ISF _@(L:_
118 } Ly
120 M
-122 | bias_”;[ l ltai
124 } KI_ - Gnd
-126 '

2 4 6 8 10 12 14 16
Tail Current (mA)



Phase noise below carrier at 600kHz offset

Complementary Cross-Coupled VCO

-126

fo=1.8GHz, 0.25um Process

o
o
el T
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1244

fo=1.8GHz
P=6mW
-121dBc/Hz@600kHz




Phase noise below carrier at 600kHz offset
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-116 —

Complementary vs. NMOS-Only VCO
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Another example (Margarit et al.)
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T. Lee, Stanford University Center for Integrated Systems



Predicted vs. measured

LTV model
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T. Lee, Stanford University Center for Integrated Systems
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Approximate ISF for Ring Oscillators

The peak of the ISF is inversely proportional to the
maximum slope of the normalized waveform.

f(x)

(x)
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Risetime and Delay Relationship

Stage Delay: tp = f,n
max
PN 2Nn 1 _ m
Period: 210 = 2Ntn = = O , =
P fmax fmaX Nr]
2 o1 1
ISF RMS: rrms = — 373
3n"N
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5-Stage Single-Ended Ring Oscillator

fo=232MHz, 2um Technology

i -30F Predicted: -
@ )
<) L{Af} = 10log(0.84/Af?)
N
T L{500kHZ = —114.728¢
5 Hz
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@ IE
§ 80
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8 ool = 80kHz
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N !
-130 T N
102 103 104 10° 100
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11-Stage Single-Ended Ring Oscillator

fo=115MHz, 2um Process

N

; -y —rrrrry T
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ISF RMS vs. Number of Stages

1.0

RMS Value of ISF

0.1

Inverter Chain CMOS Ring Oscillator

2

4N (n=0.75)

+: Fixed Frequency, 5V Supply
o: Fixed Drive, Similar Inverters
X: Fixed Frequency, 3V Supply

2 3 Number of Stages, N 10
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ISF RMS vs. Number of Stages

Differential MOS Ring Oscillator

0.3 }

0.2 }

0.1 F

RMS value of ISF

- 3/NY° (n=0.9)
L +: Fixed Power, Fixed Swing
- 0. Fixed Power, Fixed Load Resistance
- X: Fixed Tall Current, Fixed Load Resistance

3 4 10
Number of Stages, N
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Phase Noise In Differential Ring Oscillator
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Effect of Number of Stages on Phase Noise

For a given power and frequency, phase noise degrades

with number of stages, N, in differential ring oscillators.

2

V VvV fo
o) = & v Yoo, Voo 05

3 char RLItaHE| Af?
Vbp
2
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This is NOT the case for single-ended ring, since the swing is constant.
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Differential Ring Oscillators

Effective channel length: Lo=0.25um.
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Predicted and Measured Phase Noise

Differential Ring Oscillators; R;=1kQ, L #0.25um
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Die Photo of 12-Stage Differential Ring Osc.
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O-Stage Current-Starved Single-Ended VCO
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Amplitude Noise

[1 Phase noise generally dominates close-in spectrum.
Amplitude noise typically dominates far-out spectrum.

[1 Effect of amplitude noise may be accommodated with
the same general approach: Investigate impulse re-
sponse.

[ If amplitude control mechanism acts as a first-order system
(e.g., iIf it i1s well damped), amplitude impulse response will
die out with a time constant equal to the inverse bandwidth

of the control loop.
[0 For an LC tank, this bandwidth is the tank bandwidth, wy/Q.

[0 Corresponding contribution to noise spectrum is flat to frequency
offset equal to that bandwidth, then rolls off; produces pedestal in
overall response.

I If amplitude control is underdamped (e.g., behaves as 2nd
order), can get peaking in the spectrum.
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Amplitude Response

[1 Possible responses corresponding to these control dy-
namics look roughly as follows:
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Summary and Conclusions

[1 LTI theories say:

[0 Maximize signal power and resonator Q and operate at edge

of current-limited regime, with minimum ratio L/R consis-
tent with oscillation.

[0 Can’t do anything about 1/f3 corner frequency.

[0 Corner frequency is strictly technology-limited.

[1 LTV theory says:

[0 Continue to maximize signal power, resonator Q, and R/L.
[0 Use tapped tanks (a la Clapp, e.g.).

I  Maximize symmetry (in the ISF sense) to reduce 1/f3 corner
frequency.

[1 Choose topologies and bias conditions so that energy is re-
turned to tank impulsively.
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