

Gain: system model

Time-invariant system S with load impedance Z_1 . System S has an input impedance Z_i and an output impedance Z_o

Meaning of the word gain

- Means nothing without the correct additional specifications:
 - What is the load / source impedance
 - Voltage or power gain, and which power gain?
- Analog designers normally use the definition of voltage gain.
- RF / microwave designers are more familiar with several gain definitions in terms of power.

Voltage gain

Assuming Z_i is much higher (i.e. $Z_i \rightarrow \infty$) than Z_s and Z_o is much smaller (i.e. $Z_o \rightarrow 0$) than Z_i . In the limiting case no current is flowing into system S.

Delivered power at the input

This is the power delivered at the input of system S. (Treating the impedances Z as resistors).

Available power at the input

Maximum power that can be delivered to the input of the system S: $Z_s = Z_i^*$ (conjugate input match).

Available power at the output

Maximum power that can be delivered to the output of the system S: $Z_0 = Z_1^*$ (conjugate output match).

Available gain G_a

Mismatch between R_i and R_s reduced G_a . A perfect input match yields $P_{s,av} = P_{i,del}$. G_a assumes a perfect output match.

Delivered power at the load

The delivered power at the output of system S, $P_{I,del}$ is lower than the available power $P_{o,av}$.

(Delivered) power gain

Mismatch between R_L and R_o reduced G_p . A perfect output match yields $P_{o,av} = P_{I,del}$. G_p assumes a perfect input match.

Maximum gain

The maximum gain for system S is obtained when there is a perfect input and output match. In equations: $Z_s = Z_i^*$ and $Z_o = Z_l^*$

Transducer gain

The transducer gain (lowest gain) is obtained assuming both at input and output a mismatch. When R_L is R_o , G_t becomes G_a . When $R_i=R_s$, G_p is obtained. Г

TU/e

Five different gain definitions

$$A_{v} = \frac{V_{o}}{V_{i}} \longrightarrow \frac{V_{l}}{V_{s}}$$

$$G_{a} = \frac{P_{o,av}}{P_{s,av}} = \left(\frac{R_{i}}{R_{i}+R_{s}}\right)^{2} A_{v}^{2} \frac{R_{s}}{R_{o}} < \frac{P_{o,av}}{P_{i,del}}$$

$$G_{P} = \frac{P_{l,del}}{P_{i,del}} = A_{v}^{2} \frac{R_{L}R_{i}}{(R_{L}+R_{o})^{2}} < \frac{P_{o,av}}{P_{i,del}}$$

$$G_{\max} = \frac{P_{o,av}}{P_{i,del}} = \frac{P_{l,del}}{P_{s,av}} = A_{v}^{2} \frac{R_{i}}{4R_{o}}$$

$$G_{t} = \frac{P_{l,del}}{P_{s,av}} = \left(\frac{R_{i}}{R_{i}+R_{s}}\right)^{2} A_{v}^{2} \frac{4R_{L}R_{s}}{(R_{L}+R_{o})^{2}}$$

Hence it is important to specify the gain definition one is using

Question ?

What is the relation between available power gain and (unloaded) voltage gain Av for a cascade of N stages?

TU/e

G_a and A_v of i^{th} stage of N cascaded stages

Assume perfect input and output matching (by definition since we talking about available gain)

$$G_{a,i} = \frac{P_{o,av,i}}{P_{s,av,i}} \qquad P_{s,av,i} = \frac{V_{o,i-1}^2}{4R_{o,i-1}}$$

$$P_{o,av,i} = \frac{V_{o,i}^2}{R_{o,i}} = \left(\frac{R_{i,i}}{R_{i,i}+R_{o,i-1}}\right)^2 V_{o,i-1}^2 A_{v,i}^2 \frac{1}{R_{o,i}}$$
No factor 4 compared to single stage G_a equation: power dissipated

2

in the output resistance of the two port has already been taken into consideration (in the previous stage)

TU/e technische universiteit eindhoven

So Av_{,i} can be calculated if we know Ga_{,I} (or the other way around)

$$G_{a,i} = \frac{P_{o,av,i}}{P_{s,av,i}} = A_{v,i}^2 \frac{R_{o,i-1}}{R_{o,i}} = A_{v,i}^2 \frac{R_{i,i}}{R_{o,i}}$$

As mentioned: this equation assumes that the input of the Ith stage is matched to the output of the previous stage (the (i-1)th stage)