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provide both higher levels of integration and lower overall cost, as demon-
strated in complex circuits such as frequency synthesizers. In fact, all building
lar technologies from

blocks of typical transce

many manufacturers.
The third contender 18 CMOS technology.

momentum of the digital market, CMOS devices
quencies, €. tens of gigahertz inthe 0.35-pumgen
book, “RF CMOS” has suddenly
technology must nevertheless 1€s0
coupling of signals that differ in amplitu
temperature and process, and device mo

ivers are available in silicon bipo

Supported by the enormous
have achieved high transit fre-
eration. AsWe will see in this
ic of active research. CMOS

tve a number of practical jssues: substrate
riation with

de by 100 dB, parameter va
deling for RF operation.
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BASIC CONCEPTS
IN RF DESIGN

RF designers d
raw
nals and systems, Iﬁpt?l?smﬁny concepts that originate from the theory of si
terminology used in RF elgctipte‘r, we describe these concepts and de}flh(l)e ilhg
. ! onics €
in the following chapters so as to prepare the reader for the material
Beginning with i
. ’ nonlinear syst ;
distortion. eain . ystems, we describe effect
b S i

briefly studgy intCe(;IsnpriSSK-m’ cross modulation, and intermodslllllii'as harmonic
processes and noiseyr;ndo'l interference and Nyquist signaling re:’?en  Tadam
Finally, we describ -and introduce approaches to representin, e et

s cribe passive impedance transformation gnoise in circuits.

: 2.1 NONLINEARITY AND TIME VARIANCE

n T

h x1(t) — (@), x@) - » @) 21
whe , |
re the arrow denotes the operation of the system, the |
, then
axi(t) + bxa(t) — ayi(t) + by:(2), (22)

for all valu
es of the constant
condition is nonli s a and b. Any system that d
‘ oe : .
. Sytem nOn]inearliI;‘e'?I]; Note that according to this deﬁnitios not SatISfY this
, it has nonzero initial conditions or finite “ ’ffw © consider 2
offsets.”
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A system is time invariant if 2 time shift in its input results in the same
time shift in its output. That is, if x(t) = y(t), then x(t—1) y(t —1)s for
all values of T. A system s time variant if it does not satisfy this condition.
While nonlinearity and time variance are intuitively obvious concepts,
they may be confused with each other in sOMe cases. For example, consider
the switching circuit shown in Fig. 2.1(a). The control terminal of the switch is

driven by Vint () = A1 cos wyt and the input terminal by v () = Ay coswnt-
We assume the switchisonif Vi > 0 and off otherwise. Is this system ponlinear
or time variant? 1f, as shown in Fig. 2.1(b), the path of interest is from Vinl to

(while Vin2 is part of the system and still equal to A, cos wyt), then the
system is nonlinear because the control is only sensitive to the polarity of Vinls
and time yariant because Vout also depends ON Vin2- On the other hand, if, as
shown in Fig. 2.1(c), the path of interest is from Vin2 t0 Vout (While Vin is part
of the system and still equal to A, cos wit), then the system is linear [EQ- 2}

but time variant. Thus, general statements s
11 see in Chapter

ambiguous. As W€ wi
design of mixers.

Vout»

ch as “switches ar¢ nonlinear” are

6, these distinctions are critical in the

Vout

V
" out

s
b

Figure 2.1 (a) Simple switching circuit, (b) nonlinear time-variant system,

() linear time-variant system.

e above observationi

Another interesting result of th
that do not exist in the input signal.

can generate frequency components
o e variant, for example,

s that a linear system
This

Fig. 2.1(c)- Since in this
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. . . .
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tft cen C aIld 1’ tlls C“tFut SFE:tILIIl 18 gl cn t}

400
Voulf) = Vin(f) x 3 S00/2) n
n;oo nr ‘S<f “};) 23)
+00
- sin(n7/2)
n;oo ni sz( - %) (24)

where * denotes con i
volution, §(+) i .
Thus, the out : ,0%) 18 the Dirac delta functi
put consists of vertically scaled replicas of ‘i I20 (n J} ;lrsllcllifjtw1 d= bznéwl ‘
in e y 1 T1 .

A system is call
ed “memor 1 TS
values of its i yless” if its out
s of its input. For a memoryless linear SysIz:Itndoes not depend on the past

y(@) = ax(t), 25)

where « is a function of time i
of time if the s is ti
ystem is time variant [e i
.g., Fig. 2.1(c)]. For

a memoryless nonline
| ar system, the i ;
mated with a polynomial Y he input-output relationship can be approxi

y(1) = oo + arx(t) + ax’(t) + asx’ (1) + (2.6
6)

where «; arei :
) 7 n general functions of time i
illustrates an solume if the systemis ti i :
05 and 01 aer)éamep!e ;Yhere the. input signal is applied tﬁi;’f iant. Fig. 2_2(3)
bipolar transistofs ?}? lgally switched by means of a square \: v OfFQ1 P
. the circuit can be viewed as in Fi ave. For ideal
n Fig. 2.2(b) and

Vou(?) = (181 exp %)s(t) . R,
T

where Ig; represent:
s the saturation cur
square wave toggling between —1 and —flnt of 01, Vr = KT/g.and s s e

2.7)

Figure 2.2 (a) Swi

f . Switching differenti i

) " . .

Siamal (b equivalont attesit of (a)r.x ial pair with tail current source driven by a



5 Basic Concepts in RF Design

14 Chap 99 £ 1 nse 0o —X (t)
The system described Y (2.6) has “Odi? Symn(l)eftg efef;eslgc;ircuit having
(5] . i ;= . .
A occursit o bipolar
is the negative of thatto x (‘t). This | or “balanced.” For example, the ,lpﬁc.
led differentia put-output characteristic:

odd symumeHy . ?%ig. 2 3 exhibits the following in

differential pair 0 " .
Vout = RIEE tanh s ,

which 1s an odd function.

Vout

®)

(a)

e2.3 Bipolar differential pair

- tic.
along with its input-output characteristy

Figur
. ut depends on the past values of

113 299 3 3 Out .
o lin  ein ariant, dynamic system,

(s). For a linear, time-inv
y(t) = h(t) * x(t),

e. If a dynamic 'syst
the time origin,

A system is call

its input(s) or output o

em is linear but

where A7) denotes the impulse respons £ 8(6) — b,

time variant, its impulse response depends on
then (¢ —T) > h(z, ). Thus, o
y() = h(t,T) * x(1).

s both nonlinear and dynami

Finally, if a system 1 d with a Volterra series 11,

sponse can be approximat
scope of this book.

2.1.1 Effects of Nionlinearity

an be approximat
nlinearities O

While many analog and RF circuits €
we limit our analy

i o
to obtain their response 10 small glgna;}(s:,i :1
and important phenomena. For simplicity,
s me-variant systems and assume
time-va i ) y N
N e (1) 4 xS (1) a3

¢, then its impulse 1~
2], a topic beyond the

ed with a linear moc.iel
ften lead to interesting
sis to memoryless?

@11
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The readeris cautioned, however, that the effect of storage elements and higher-
order nonlinear terms must be carefully examined to ensure (2.11) is a plausible
representation.

Harmonics If a sinusoid is applied to a nonlinear system, the output
generally exhibits frequency components that are integer multiples of the input
frequency. In Eq. (2.11), if x(¢) = A coswt, then

y(t) = a1Acoswt + ar A’ cos” wt + a3 A’ cos’ t (2.12)
3

A? A
= (1 + cos2wt) + @3

2 1 (3 coswt + cos3wt)

(2.13)

= o1 A coswt +

3 2 X

C(QAZ

3¢ "
= 7 + { oA+

(6%)
) coswt + cos 2wt + cos 3wft.

(2.14)

In Eq. (2.14), the term with the input frequency is called the “fundamental”
and the higher-order terms the “harmonics.”

From the above expansion, we can make two observations. First, even-
order harmonics result from «; with even j and vanish if the system has odd
symmetry, i.e., if it is fully differential. In reality, however, mismatches corrupt
the symmetry, yielding finite even-order harmonics. Second, in (2.14) the am-
plitude of the nth harmonic consists of a term proportional to A" and other
terms proportional to higher powers of A. Neglecting the latter for small A,
we can assume the nth harmonic grows approximately in proportion to A”.

Gain Compression  The small-signal gain of a circuit is usually obtained
with the assumption that harmonics are negligible. For example, if in (2.14),
a1 A is much greater than all the other factors that contain A, then the small-
signal gain is equal to ;. This quantity can be seen in the familiar differential
pair of Fig. 2.3 to be equal to
Uout I EE R

N ’ 2.15
Vin 2VT ( )

- However, as the signal amplitude increases, the gain begins to vary. In fact,

nonlinearity can be viewed as variation of the small-signal gain with the input
level. This is evident from the term 3a3 A% /4 added to a1 A in (2.14), as well as
the input-output characteristic shown in Fig. 2.3.

In most circuits of interest, the output is a “compressive” or “saturating”
function of the input; that is, the gain approaches zero for sufficiently high input

levels. In (2.14) this occurs if a3 < 0. Written as o + 3a3A%/4, the gain is
. therefore a decreasing function of A. In RF circuits, this effect is quantified by
the “1-dB compression point,” defined as the input signal level that causes the
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Chap.2 B scale as a function of

log-log .
i i by1dB. If plotted ona ) e he 1.4
small-Slgnfl ge?n'zl;[e(:) c?lrl(t)gut}{evel falls below 1t8 ideal value by

the input level, .

compression point (Fig. 2.4).

20 log Aout "‘,':i...

Ai.gs 20109 Ain

i int.
4 Definition of the 1-dB compression poilt

Figure 2.
i we can write from (2.14)

To calculate the 1-dB compression poi »
3 s A2 5 _ 20loglan| — 1dB. 2.
201log \Ol1 + Z_a3A1-dB

That is, o (2.17)
Apas = 0.145\&—3\-

ircuit, the 1-dB com-
i . put range of the Cir 2 50-Q
of the maximum 1P 10 35.6 mV pp iN
A me%‘;‘t“jccurs - ound —20 to —23 dBm (632
ession pol ers.
s;stem) in typical tront-end RF amplifie —
fte Wi ssive char
ing  Circuits with COMPIE® .~ " a1 along
- 1zation and Blocking desired signa )
Desen_\sntlzatl‘,’ + when they process 2 weak, erage” gain
ibit an interesting effec ds to reduce the “2

exh . - nce a large signal tends to F+- 11 gain. Called
with a strong interferer. S0 1 may experience a vyanishingly sma) gof (211) by
of the circuit, the weak signal M3y lyzed for the characteristics

«desensitization,” this effeC: Cjn; ec?:;im The output i
: = Ajcoswi 2 .
assuming X (£)

4 2 N )

A,, reduces 10

3
y(t) = (Oll + EocsA%) Ajcosont +

2 decreasin
desired signal 1 equal to (1 1+ 3a343/2), 8

. 10, all
: _the gain drops t0 2¢
0. For sufficiently 1ar%§eAt zrm «plocking signal usuall

which, for A1 K

Thus, the gain for the
functlon Of A2 1? -(X%LLIAn\roﬂ » In RF deslgn’

(219)
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refers to interferers that desensitize a circuit even if the gain does not fall to
zero. Many RF receivers must be able to withstand blocking signals 60 to 70
dB greater than the wanted signal.

Cross Modulation Another phenomenon that occurs when a weak sig-
nal and a strong interferer pass through a nonlinear system is the transfer of
modulation (or noise) on the amplitude of the interferer to the amplitude of the
weak signal. Called “cross modulation,” this effect is evident from Eq. (2.19),
where variations in A, affect the amplitude of the output component at w;.
For example, if the amplitude of the interferer is modulated by a sinusoid
Ay(1 + m cos wy,t) cos wot, where m is the modulation index and less than
unity, then (2.19) assumes the following form:

2 2

3
() = |:0l1A1 + 5063A1A§ (1 + m7 + —2—c052wmt

+ 2m cos w,,ﬁ)} coswit + . (2.20)

Thus, the desired signal at the output contains amplitude modulation at w,, and
2wy, .

A common case of cross modulation arises in amplifiers that must simul-
taneously process many independent signal channels, e.g., in cable television
transmitters. Nonlinearities in the amplifier corrupt each signal with the am-
plitude variations in other channels.

Intermodulation While harmonic distortion is often used to describe
nonlinearities of analog circuits, certain cases require other measures of non-
linear behavior. For example, suppose the nonlinearity of an active low-pass
filter is to be evaluated. If, as depicted in Fig. 2.5, the input sinusoid frequency is
chosen such that its harmonics fall out of the passband, then the output distor-
tion appears quite small evenif the input stage of the filter introduces substantial
nonlinearity. Thus, another type of test is required here. Commonly used is
the “intermodulation distortion” in a “two-tone” test.

IH ()| &

[V
Figure 2.5 Harmonic distortion in a low-pass filter.

When two signals with different frequencies are applied to a nonlinar sys-

_tem, the output in general exhibits some components that are not harmonics of

the input frequencies. Called intermodulation (IM), this phenomenon arises
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E P by} ] . ]‘ . E ] . ] ] ] . . . ]

ter than unity.
powe x(t) = A1 cos wyt + Az €OS wyt. Thus,

{ion, assume
| cos @
y(t) = o1 (Aq cos il + A, cos wst) + oo (A1

3
+ as(Ajcosont + Ajcos wt) .

1t -+ A, €O8 a)zt)z
(221)

i onics, we obtain
ding the left side and discarding de terms and harm

dulation products:
4+ w)t + o A As cos(wy — )t

Expandil
the following intermo

w1 + wy ¢ OtzAlAz cos(a)1

(2.22)

o 3(X3A%A2 2 _ a)z)t
: M cos(2wy + o)t + — 7 cos(2w1
30(3A%A1 9 _ (,01)1‘
: w cos(Qwy + w)t + ——-—I——‘ cos(2wn
= 2w + o A (2'24)
and these fundamental components
3 3 é A A2> cos wif
w = W, 0" (a1A1 + Zong1 + 2a3 145
25)
3 3 2 ) cos wat. 2
+ <a1A2 + Za3Ag + 5oz3A2A1>
12wy — W2 and 2w, — W1,
i i hird-order IM produ‘ctsa . S
e PamC\ﬂaY m'tereSt T thf(t 1 oint here is that if the difference be :; en o1
illustrated in Fig. 2.6. The key p s n — o e

1

even in cases such asthe

A=A = A. and the ratio of the
] 1— >

. typical two-tone tes he IM distortion.
LPF gf Fig. %fﬂelg ;pz?t) third-order prodgcts to o1 A ci?ﬁne;te :: we say the ™
amphtuifpcl)e ifo A =1Vpp and 303 A% /4 = 10V pp ’«ith respect to the
For exa ) ‘

“¢” means
mponents are at —40 dBc, where the letter "C
co

carrier.”

T g 02 ‘. ®
[OF] (7] ® : ]
204~ W2 20~ ©4

jon i i stem.
woure 2.0 Intermodulation 1n @ nonlinear sy
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Intermodulation is a troublesome effect in RF systems. As shown in
Fig. 2.7, if a weak signal accompanied by two strong interferers experiences
third-order nonlinearity, then one of the IM products falls in the band of in-
terest, corrupting the desired component. While operating on the amplitude
of the signals, this effect degrades the performance even if the modulation is
on the phase (because zero-crossing points are still affected.) Note that this
phenomenon cannot be directly quantified by harmonic distortion.

Interferers
¥¥ Low-Noise
AA Desired Amplifier
Channel
®

Figure 2.7 Corruption of a signal due to intermodulation between two interferers.

The corruption of signals due to third-order intermodulation of two nearby
interferers is so common and so critical that a performance metric has been de-
fined to characterize this behavior. Called the “third intercept point” (I P3),
this parameter is measured by a two-tone test in which A is chosen to be suf-
ficiently small so that higher-order nonlinear terms are negligible and the gain
is relatively constant and equal to ;. From (2.23), (2.24), and (2.25), we note
that as A increases, the fundamentals increase in proportion to A, whereas the
third-order IM products increase in proportion to A* [Fig. 2.8(a)]. Plotted on
a logarithmic scale [Fig. 2.8(b)], the magnitude of the IM products grows at
three times the rate at which the main components increase. The third-order
intercept point is defined to be at the intersection of the two lines. The hori-
zontal coordinate of this point is called the input I P; (11 P3), and the vertical
coordinate is called the output I P; (O1 Ps).

A 20log(01A)
OIP,
oA

Fos” : 201og(3 ¢134°%)

'EOL;;A 3

| . _

: 3 20log A

(@) .

Figure 2.8 Growth of output components in an intermodulation test.
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Tt is important to appreciate the advantage of ] Pyovera simple IM mea- | o Sec. 2.1 Nonlinearity and Time Variance 21
surement. If the magnitude of IM products (normalized to that of the carrier) 5 which, in conjunction with (2.28), red
is used as a measure of linearity, then the input amplitude with which the test ~ > reduces to
is performed must be specified. The third intercept point, on the other hand, is - M Al

erve as a means of comparing the linearit : = —-
paring y Con Arwms A2 (231)
Sequently, n

a unique quantity that by itself can 8

of different Circuits.
From the input-output characteristic of Eq.(2.11), wecah derive a simple

expression for I P5. Let x(t) = Acos ant + Acos wyt. Then,

9 9
y(t) = (Otl + Za3A2> Acosant + <ozl + Zocy,Az) A cos wpl

20 IOg Awl w2 — 20
, log A =
g Ajys = 20log A% py — 20log AL, (2.32)

and

ZOIOg A]P = -1- ’
3 2(20 log Api,w2 — 201log Arms) + 20log Ajy. (2.33)

Thus, if all the si
; > gnal levels are ex i
is equal to h _ pressedin dBm, the i ied i
alf the difference between the rnagnitucfelsn(};futthtci1 lflrjd l(filtercept point
ndamentals and

3
— )t + %3 A® cos (202
the 1 M5 products a
t the output plus the
corresponding input level [Fi
ig. 2.9(a)].

3 3
+ Za3A cos(Zwn

(2.26) The ke .
oint i
. ' - ObViatig pthm here is that I P; can be measured wi
If ay > Oz A% /4, the input level for which the output components at wy and g the need for extrapolation. with only one input level
oy have the same amplitude as those at 2w — @2 and 2wy — M1 is given by ’
3 Main Signal
wilArps = SloslATps: 227
laa|Arp3 4\063\ 1P3 (2.27) L ot Power
Thus, the input I P;is :: AP \
Arps = (2.28) l} 11 [F N L i
H 1 W2 e :
: : ® \
and the output 1 P is equal to a1 Arp3- 201-@y 205~ 04 AP IM Power
The parameter ] P; characterizes only third-order nonlinearities. Inprac:
tice, if the input level is increased to reach the intercept point, the assumption 1Py APlyg :
ay > 90z A*/4 10 jonger holds, the gain drops, and higher-order IM products slaem=—2  * P o
become significant. 10 fact, in many Circuits the 1 P5 is beyond the allowable e
input range, sometimes evenl higher than the supply voltage- Thus, the practical TP ;
method of obtaining the I Ps is to measure the characteristic of Fig. 2.8(b) for 1 .
trapolation on & Jogarithmic scale 10 liP,
(a) 20log Ain
®

small input amplitudes and use linear €X
find the intercept point.
A quick method of measuring the 1P

ut level at each frequency by A, the amplitu
nd the amplitude of the [

us denote the Figure 2.9  (a) Calculati .
interpretation of (a). ion of I Py without extrapolation, (b) graphical

is as follows. Let
nts

de of the output compone

M; products by Ara3- The Shown in Fi :
n in Fig. 2.9(b) is a geometric interpretation of the ab
ove relation-

‘ ship. Since line L
" ‘ 1 has a slope e .
an lnput increm p qual to unlty and hne L
equal to 3AP/2einnt LAP /2 ylelds an equal increment in f ? Slgpe e_qual to 3,
; », reducing the difference between thle i‘ilvo ‘11.11 increment
nes to zero.

inp
at wy and @2 by Awi,w2,
from (2.26), We have

Aw17w2 ~ ___\_(E}\IIAL
Arms 3ot Afy /4 y
The above a i
the desi pproach provides an esti
4ag] 1 esign or cha ization. Th estimate of /Ps in init
be obtained thro:a;tenzatlon, e actual value of | P3 El e pmhases of
gh accurate extrapolation to ensure tzatoﬁever’l st s
all nonlinear and

C

3ozl A,
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Another measurement method encountered in the literature is t0 apply
put level, and

a single tone, plot the third harmonic magnitude versus the in
obtain the intercept point by extrapolation. From the example of Fig. 2.5, we
note that this technique does not yield a correct value for I Ps.

To gain a better feeling about the required linearity in typical RF systems,
let us calculate the amount of corruption that a 1-uVrms signal experiences by
two 1-mVyems interferers in an amplifier having an [ 1P of 70 mVems (% -1

dBm) (Fig. 2.10). Neglecting desensitization and cross modulation, we canl

write

Asig,out ~ Aint,out ’ (2‘3 4)
Asig,in Aint,in
where Asig denotes the signal amplitude and A the interferer amplitude. It
follows from (2.31) that
2
Asig,out — Asig,in3' A[pg, (235)
AIM3,out Aint,'m

where Asigin = 1 uVrmss Aipz = 70 mVrms» and Ajptin = 1 mVrms- Thus,

the ratio is equal to 4.9 ~ 13.8 dB.

—1 MVyms

e, =-10 dBm
1 Wims 3

0y W2 ® ‘. ®

2@y~ My  2W27 (OF)

Figure 2.10 Example of achievable SN R in the presence of large interferers.

Itis also instructive to find the relationship between the 1-dB compression
for a third-order nonlinearity. From (217) and (2.28),

point and the input I P3
we conclude that the two are related by

] 0.14
Arep _ YOI (2.36)

e

Arp3 4/3

~ —9.6dB. (2.37)

212 Cascaded Nonlinear Stages

Since in RF systems, signals a
know how the nonlinearity of cach stage is referred to the

In particular, itis
D 1 P, and eain of the individual stages.

re processed by cascaded stages, it is important 0
nput of the cascade.

desirable to calculate an overall input third intercept point 18

Sec. 2.1 Nonlinearity and Time Variance 23

Consider two ;

nonlinear sta : .

characteristi ges in cascade (Fig. 2 .

istics of the two stages are expressed f(esﬁe c tllvle)l If the input-output
’ y, as

@) = arx(t) + axx(t) + oax’ (1)

n(®) = fin@® + fayi( 50
: 3
. Bayi(t) + Bayi (1), (2.39)
@) = Biloax(®) + ax*(t) + asx’(1)]
+ Bolasx(t) + apx’ () + asx’> ()
+ Bifox(t) + « 2
| x () + « PO
) | 3 1. 2.4
onsidering only the first- and third-order terms, we ha -
, ve
1) —
1o (t) = a1 fix(t) + (@sfi + 201028 + 03 B3)x7(1) +
Thus, from (2.28) 1 - -
Arps = \/ é| ofs
3 a3Bi + 201 + o3 s . @42)

g ?

As a worst-cas i

-case estimate, w

denominator. e add the absolute values of the three terms in th
e

w

3,2

Figure 2.11  Cascaded nonlinear stages.

A; _ 3laspi] + [2aranfal + 35|
T o B (2.43)
= 1 + 3a22 of
Alpsi 284 + A2 (2.44)

Where A P a]l(l A lel)lese“l l c IIII)ll‘ I I l!()lllls() ll[e l an e(',()l[(l
I N

stages, respecti

~ ’ ively. Note that A

o r A

ather than power quantities. 1p3, Arps 1, and Ajps o are voltage quantities
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From the above result, we note that as o1 increases, the overall I P; de- .
creases. This is because with higher gain in the first stage, the second stage 3,1
x(t)

senses larger input levels, thereby producing much greater I M5 products. (Re- ~, ®
| 7F y, (t

call that / M3 products grow with the third powet of the input amplitude.) |
¢ and iden- A R
2

To gain more insight, we assume x(t) = Acos wit + Acos®2
tify the various IM products. Referring to Fig. 212, we make the following
observations.l (1) The fundamental input components are amplified by approxi-

P, ,

P

w Wy 0o

Y
1 O -

mately o inthe first stage and B in the second. Thus the output fundamentals
are o p1A(cos il A coswat)- (2) The I M5 products generated by the first
stage, namely, 323/ 4) A3[cos(2w1 — wy)t +cos(Zwz— w)t), are also amplified

(&)1 (02

3g3A°
74 8 4 4 ."E“E,- %Ot;;ﬁpﬁsé 4

.

2(’01—'(02 2(02—(,01'

2B3(0nA )3

S TN

(X1A A A
204~ Wo 205 M4 o

by p1 when they appear at the output of the second stage. (3) The second stage
2(,01—(02 20)2_ ey B ()

senses a3 A(cos wnt +Ccos wyt) atits input and hence generates these I M3 prod-

ucts: (3B3/4) (ay A)? cosow1— wy)t + (BB3/H (ar A)? cos(2w2 — w)t. (4) The
second-order nonlinearity in y1 () generates components at wp — W2, 21, and
age, such com-

2w,. Upon experiencing & similar nonlinearity in the second st
onents are translated to 201 — @2 and 2w, — W1- More speciﬁcally, as shown
inFig. 212, y2 ) contains terms such as Zﬂz[oclA cos wit - oczA2 cos(wr — o)t)
and 2B2(c1 A cos w2l -0.50ng2 cos2wit). The resulting third-order IM products
s (3a1a252A3 /2)[cos2w1 — wy)t + cos@w2 — w)t)-

can be expressed
From these observations, we can write
W) = oy frA(cos it + cos wat)
3a 302 3040
3P1 + ./—1'33 + L e i A3[cosan — W)t
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+ cos(Zwy — )]+
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(2.45) Fi
jgure 2.12  Intermodulati
ation mechanisms in c
ascade of two nonline
ar stages.

obtaining the same [ P as above.
In many RF systems, each stage in 2 cascade has a narrow frequency
band. Thus, the components described in the fourth observation above fall out

of the band and are heavily attenuated. Consequently, the second term 01 the

right-hand side of (2.44) becomes negligible, giving
1 1 h '
R — (2.46)

5 A2 2
Alps Alpan Alpsn
on for three or More stages:

scaled down b :
y the total gain i
(2.47) is merely a gain preceding that stage. We sho
: L . 1 .
simulations mu};ttr)l approximation. In practice, more pr uld emphasize that
e performed to predict the overall I?‘»‘ ecise calculations or
3.

2 INTERSYMBOL INTERFERENCE

This equation readily gives a general expressi
| 1 1 o? o2l

3 %_—2_—«_\__,2_1_.- __21_@—_;...., (2,47)’;
Alps ATp3a ATp32 Alp3s
where AIP33 denotes the input I P; of the third stage. Thus, if each stage in
a cascade has a gain greater than unity, the nonlinearity of the latter stage

becomes increasingly more critical because the I P5 of each stage is effectivel

Linear time-i .
. -invariant system 1
sufficient bandwi s can also “distort” a signal i
: a
odic square WaV::d;[rlll ‘a?ttenuatlon of high-frequenC}gf cc:nllfptohneg ?o I;Ot have
[Fig. 2.13(a)]. H ow-pass filter is a familia nts of a peri-
o il . O s - ] r exampl -
random bit gtreanzev"?cr)’ &lrglted bandwidth has a more cll)eiriﬁ:rllltc 11 bf;efhawor
 rectangular pulse i . To understand the issue, first 1ental effect on
y A 1S apphed toal » recall that if a single i
tial tail that b alow-pass filter, th . gle ideal
CCO! s . , the output 3
o i that becomes more significant s the e D e s
y because a signal cannot be both time lin?icileases. This
ited and band-

width limited:
o : when the ti .
System, the ime-limited pulse passe
output must extend to infinity in tI;le tiriléhdrgug}'l the band-limited
main.

of two impulses, each with a weight A/2. ‘We drop th

1 The spectrum of A coswt consists
¢ end result is still correct.

19 i the figures for simplicity. Th
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