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phenomenon Jeads to higher €1r0r rate in the detection O
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The problem of IS is particulaﬂy

tions because the bandwidth allocated to cach channelis fairly narrow. Methods
of reducing 1SI include pulse shaping (“Nyquist signal’mg”) in the transmitter
and “equalization” in the receiver. We briefly i ‘

describe Nyquist signaling here
and refer the reader to the extensive literature on equalization for I1SI mitiga-
tion [3, 4] .

In order tO reduce ISL,
susceptible to interference with

chosen such that itis leSS‘;
its shifted replicas. 10 Nyquist signaling, each

pulse is allowed to overlap with past and future pulses, but the shape is selected
such that ISI is zero at certain points in time. Tilustrated in Fig. 2.14, the idea
is that all other pulses g0 through zero at the point when the present pulse

reaches its peak. Thus, if the bit stream is sampled at # = kTs,no IS exists.

A simple calculation leads to a basic condition for Nyquist signals. ¥o
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Figure 2.17 Raised-cosine filtering.

2.3.1 Random Processes

The trouble with random processes is that they are random! Engineers who
are used to dealing with well-defined, deterministic, “hard facts” often find
the concept of randomness difficult to grasp, especially if it must be incorpo-
rated mathematically. To overcome this fear of randomness, we approach the
problem from an intuitive angle.

We consider a phenomenon random because we do not know or simply
do not need to know everything about it. We characterize the process with
only a few parameters and functions and solve most problems without any
other information about the process. Experience shows that this approach is
feasible and adequate in many applications, including RF design. In other
words, we are fortunate that most random processes encountered in RF design
lend themselves to relatively simple modeling. :

For our purposes, a random (actually a “stochastic”) process can be de-
fined as “a family of time functions.” If we measure the noise voltage across a
resistor as a function of time today, the waveform is different from that mea-
sured tomorrow? (Fig. 2.18). To know everything about the noise voltage, we
would need to perform an infinite number of measurements, each one for an in-
finite length of time. Since a single waveform measurement in general does not
provide adequate knowledge of the process, even simplest random processes
extend in two dimensions; i.e., they require a collection of measurements, hence
the phrase “family of time functions.” This is the principal difference between
random and deterministic signals—and the primary source of confusion. In
using an ordinary signal generator, we always consider the output a single

_ predictable and well-defined waveform (except perhaps for the phase at the

power-up time, which is usually unimportant). With a random signal, e.g., the

2 . . . .
_This should not be confused with time variance in a system.
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Figure 2.20 Binary signal corrupted by noise.
An important example of PDFsis the Gaussian (or normal) distribution. E, = oo | 5
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gure 2.24  (a) Two-sided and (b) one-sided spectra.
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In graphical analysis of frequency—domain operations, it is generally sim-

pler to use a two-sided spectrum, whereas actual noise calculations are more 5,(1) | H (f)| 2

casily carried out with a one-sided spectruni. Nevertheless, these two repre-

sentations bear N0 fundamental difference—though they can cause confusion.
Asan example of S (f), we consider the thermal noise voltage across a

resistor of value R. The two-sided PSD is

S:(f)y = 2kTR, (2.69)

s,(N

>

Figure 225 Noisc shaping in a linear sysiem.

|
?
%

2.3.2 Noise

where k is the Boltzmann constant and equal to 1.38 X 1073 yKand T is the
absolute temperature. Such a flat spectrum is called “white” because it contains
the same level of pOWer at all frequencies.
Equation (2.69) raises tWO interesting questions. First, is the total noise
ower of a resistor [the area under Sy (N infinite? In reality, Sx( f) is flat for
only | f1 < 100 GHz, dropping beyond this frequency such that the total power
remains finite [3]- Second, is the dimension of 2kT R power per unit bandwidth
(W/Hz)? No, the actual dimension is mean square voltage per unit bandwidth.
We tacitly assume that this voltage 18 applied across a 1-§2 resistor 1o generate
a power of 2kT R in a 1-Hz bandwidth. In circuit noise calculations, we often

write

Noise can be
of interest.S ;ﬁfssgle};idg:med as any r'andom interference unrelated to the signal
nomena such as harnrilthn S}Stlngumhes between noise and deterministic she
- as onic distortion and interm i )
processes, noise is characterized by a PDF and a ;(élll)latlon‘ As other random
Present i euits i . )
emitter resril:t;ﬁ :11 cflrl(;glts is therplal noise, generated by resistors, base and
[Fig. 2.26(a)] Theﬂ(; ipolar devices, and channel resistance of MOSFET!
Comneated b . The thermal noise of MOS devices is modeled asa cu ;
ed between the drain and source with a PSD rrent source

— 2
— 12 = 4kT | =
V3 = 4kTR - Af, (2.70) " 36m ) @.72)

where V72 is the mean square noise voltage generated by resistor R in a band-

width Af. Called the “spot noise” for Af =1Hz, V2 is measured in V?2/Hz.
To summarize the concepts of PDF and PSD, we note that the former is
a statistical indication of how often the amplitude of a random process falls
in a given range of values while the latter shows how much power the signal

tain in a small frequency interval. In general, the PDF and

is expected to con
PSD bear no relationship: thermal noise has a Gaussian PDF and a white PSD,

whereas flicker (1 /f) noise has the same type of PDF but a PSD proportional
tol/f.

Random Signalsin Linear Systems The principal reason for defining the
power spectral density function is that it allows many of the frequency—domain
operations used with deterministic signals 10 be applied to random processes
as well. 1t can be shown that if a signal with spectral density Sx(f) is applied
to a linear time-invariant system with transfer function H(s) (Fig. 2.25), then

the output spectrum is

5,(f) = S{(AHDL @) ®

where H(f) = H(s = jomf) [3]. This agrees with our intuition that the Figure 2.26 (a) Thermal and (b) shot noise in devices

spectrum of the signal 1s shaped by the transfer function of the system. Tt can
P hat if x(¢) is Gaussian, SO is y(» 13} ‘

5
It is often sai i
aid that if there were no noise, there would be no analog designers.
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where gm is the transconductance of the transistor. Derived for long-channel
devices [7}, the factor 2/3 may need to be replaced with higher values for Vop y
DD

channel lengths below 1 pm [8]. Note that the distributed gate resistance of

MOSFETs also contributes thermal noise [9], but the effect can be minimized ‘
M,

through careful layout.
In addition to thermal noise, active devices may exhibit shot and flicker | Vino— =
noise as well. Shot noise is a Gaussian white process associated with the transfer Inop

of charge across an energy barrier (e.g.,apn junction) having a PSD

(@)
Figure 2.28

2.73)

}2 = 2q1,
(b)

the average current. For a bipolar )
(a) MOS amplifier, (b) equivalent input noise generators

where ¢ is the charge of an electron and [
llector and base current shot noise is modeled as a current

transistor, the co
source connected between the collector and emitter and another between the

base and the emitter [Fig. 2.26(b)1.
Flicker noise arises from random trapping of charge at the oxide-silicon

interface of MOSFETs. Represented as a voltage source “n series with the gate,
the noise density is given by

I 4 gm nD gm n I llll

3 in f i y
nD nD

4KT (2gm/3), we obtain V2

) tain V2 = 8kT 72

v, n /(gm) and I} = :

n ansv i n repre;ent the same noise mecrlnlanism tihey agfeye/o(rii’r ltzgl ). Since

note that if |Zi| — 00, I2 » LICY ated.

the noise. At radi ol , IZ — 0, and V7?2 is suffici

. lr)adc;O frequenmes, however, |Zi,] is re’iatively lgﬁil(gr:(;;epresent
The key gOiis;gn) ,hthereby necessitating the use of both V2 an(;n %Cases

in the above example is that even though f[lhe aCtl;La.l .
cir-

cuit may have no tnal i .
referred physical input noise current, the representati I
rred sources must include 12 ntation using input-
Z.

— K 1
V2 = —— 2.74
n = WLCox f @74

where K isa process-dependent constant. While the effect of flicker noise may
rity or time

igh frequencies, We must note that nonlinea

seem negligible at hi
variance in circuits such as mixers or oscillators can translate the 1/ f -shaped

spectrum to the RF range (Chapters 6 and 7). Noise Figure

Inm sreui
defined as the ratio of the sa'lrly ?ﬂalog circuits, the signal-to-noise ratio (SNR
parameter. In RF design ignal power to the total noise power, is an im )
maximize the SNR forgtn GOIrl;(}:l? Otger hand, even though the ul,timate ggglrits ?t
. eived and dete i 0
receiver b Y cted signal
locks are characterized in terms of their “n%)is e, f?; 3:;?f§1he frt(;lnt-end
er than the

Input-Referred Noise The noise of a two-port system cant be modeled
rce and a parallel current

by two input noise generators: 2 series voltage sou
source (Fig. 2.27) [10]. In general, the correlation between the two.sOUICes

must be taken into account. We use an example tO illustrate the idea. Consider
the circuit shown in Fig. 2.28(a), where we assume proper biasing ensures that
M, isin saturation and carries a drain current of Ip. This cir

cuit has only one
dominant source of thermal noise: that due to the channel and represented by

I 3 p- For the model of Fig. 2.28(b), we calculate T/E by shorting the input port

and I> by leaving it open. Since the circuits of Figs. 2.28(a)and (b) must produce

Noise figure has bee
n defined i .
commonly accepted definition is in a number of different ways. The most

SNRw
SNRow’ (2.75)

where SN R;
in and SN Roy are the si .
and output, re T e signal-to-noise ratios mea -
put, respectively. Note that the above ratio is called tstlrlg 6‘b‘crllij[ thf e
ise factor”

noise figure =

inm X |)()()kS W g]lle a])l’ e(ll{) l“ 1)g |[()Se|a(:|1)[
OS'[ t t i i {
n ¥ g

Figare 2.27 Representation of noise by input noise generalors. gain b
. This is becaus i :
- e both the input signal and the input noise are amplified (
or
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actor and no additional noise is introduced. Therefore,

attenuated) by the same f
the noise figure of 2 noiseless system 18 equal to unity. In reality, the finite noise

of a system degrades the SNR, yielding N F > 1
n of NF in (2.75) may

Compared t0 input-referred noise, the definitio
nly the noise of the circuit under

seem rather complicated: it depends on not o

consideration but the SNR of the preceding Stage- In fact, if the input signal
contains no NOise, SNR;, = oo and NF = oo, even though the circuit may
have only a finite internal noise. For such a case, NF isnot a meaningful
parameter. In RF design, on the other hand, this does not occur because even

the signal in the first stage of a receiver 18 corrupted by the noise due to the

radiation resistance of the antenna.
Calculation of the noise figure is generally simpler than (2.75) may sug-

gest. As depicted in Fig. 2.29, we assume SN Rj, is the ratio of the input signal
power to the noise generated by the source resistance, Rs, and modeled by
szz g If the vyoltage gain from Vi, to the input port of the circuit (node P)1s
equal to &, the SNR measured at this node is
2y72
a*V,
= (2.76)

SNRn = —=°
a*Vigs

For a voltage gain of A, from P t0 Vou
equal to

2A2 V~2
* Pvlin @.17)

SNRouw = ___:______——-/ —
[VIZQS + (Vo + InRS)Z]aZA%

2
Vin (2.78)

R Sy
__—i—— __—__________—————_2 b
[VRS + (Vo + InRS) ]

where V,, and I,Rs are added before squarin
1t follows that,

NF

il

il

The NF is usually specified for a 1-Hz bandwidth
the “spot” noise figure 10 emphasize the very S

can be obtained from (2.80) as
-
(V. + InRs)?

NF =1
+ 4kT Rs

., the SNR measured at the output is

g to account for their correlation.
sl /
V2 Vv, I, Rs)*
___IQ’_‘____(_,::_E—-—-H—E—)‘ (2.79)

(Vo + IiRs) ‘
+ (Vo v In8S7 (2.80)

at a given frequency. Called
all bandwidth, this quantit
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Figure 2.29  Calculation of noise figure

where V,, and [, ar
e also i i

quency. n measured in unity bandwidth and at the same fre
Equation (2.81) indi -
. . icates that the noi i
impedance, Rg. noise figure is a functi
snot Sufﬁcieni t;ré aglecn;:ral, knowledge of the NF for a given s;?lrsczf.the source
appears in both the ulate the NF for a different source impedance gmpedance
In traditional RF s s?umefator and the denominator of the fractione'cwSe s
exhibit S0-© inputyan?jnésﬁ tl;ovtveve.r, mostﬁbuilding blocks are designe(linsgzﬁlt),

. npt ut resistance” (wi {0 °
avoidin i (with negl
Sy g‘amblgulty. in NF calculation. As we will% lgljble reactance), thereby

equires attention in certain cases ee in Chapter 6, this issue

For si i it i
imulation purposes, it is beneficial to write (2.81) as

_ TR + (G T LR

NF
4kT Rs (2.82)
_ A’[4kTRs + Vo F LR 1
A2 4kT Ry (283)
_ View 1
A? 4KTRs’ o (284)

where A = A 2
v and Vo _ . repre
calculate N F in Fi n,out TCPTESEnts the total noise at the o
of the voltage gai ;%;3.29‘,/%: divide the total output noise powel;tgui'hrmus, 0
As an exampl mf n t0 Vout and normalize the result to the ioie Sqfu;re
ple of noise fi . se of Rg.
Rp, shown in Fi gure calculation, consid i
N io. . i 3 cr the 1
g. 2.30(a). What is the noise figure of this circusiinv%ifhresmtor’
respect

to a source resistan
- ce Rg? i
given by s? From Fig. 2.30(b), the total output noise voltage is

V2 . = 4T (R
,ou slIRp),
and the gain is v (2:85)
A, = p
Rs + Rp (2.86)

In IVs stems, 1 eristic a te: ation 1m cesare 75 2
y N he characteristi nd terminati pedan





