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Tt follows from (2.84) that Random Processes and Noise 43
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Figure 2.30 (a) Calculation of noise figure of resistor Rp, (D) equivalent circuit
of (a)-
Asanother example, letus compute the noise figure of the amplifier shown Figure 2.31  (a) Feedback amplifier wi .(b)
in Fig. 2.31(2)- The circuit consists of a common-source stage and a feedback of (a). r with input match, (b) noise equivalent circuit
source follower so a8 to provide an input resistance equal to Rs. Neglecting
body effect, channel length modulation, parasitic capacitances, and the noise of
1,, we utilize the equivalent circuit shown in Fig. 2.31(b) to calculate the total — kTRed>. R2 2
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44 Chap.2 Basic Concepts in RF Desie A ‘ is not as straightforward. In the special case where Rg = Rjy1 = Roue1 = Ring,
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Figure 232  Cascaded noisy stages. yvhere NF, is the noise figure of the second stage with respect to a source
gu o can be impedance Rg.

wer at the input of the first stag In the general case, we simplify (2.99) using the concept of “available

power gain,” Ap. This type of gain is defined as the available power at the
output (the power that the circuit would deliver to a conjugate-matched load)
divided by the available source power (the power that the source would deliver
to a conjugate-matched circuit.) The available output power of stage 1 in
Fig. 2.32is

of the two stages. The total noise poO

written as R2
T Rm_p o (299
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first stag . 161
das the NF of the driving that stage. This is called the Friis equation [11]. Expressing the overall

hand side can be {dent e d term, on the other han

ight
The first term on the T1g edance Rg. The secont

with respect to a source mp




I S e

Sec. 2.3 Random Processes and Noise 47

46 Chap. 2 Basic Concepts in RF Design

noise figure in terms of the noise figure of each stage, this relation proves | Now consid o
especially useful if a receivet employs various off-the-shelf building blocks that available poweSI er the circuit of Fig. 2.35(a). In analogy with th
T gain ) e
anufacturers. available source iowérsncéegne ?}iz pOVchal:b lloss L as P/ Pout, whert(:: O}I’l-c?s)fd?j
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Jossy filter is interposed between the antenna and the low noise amplifier ina
receiver to reject out-of-band interferers (Chapter 5). VYZ’H Ry (2.108)

¢ most critical. Conversely, if a stage ©
referred to the input of that stage. This occurs, for example, if a narrowband ;
; V2R
— in out

To compute the noi
noise figure, we find the output noise voltage and the volt
age

Passive filters usedin RF receivers have gain. With a load R :
. 1, Fig. 2.34(b) implies that

Noise Figure of Lossy Circuits

:

:
4
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a finite in-band loss. In addition to attenuating the desired signal, Jossy circuits
well, a fact that may not be obvious if we consider 5 )
Viou = 4kT Ryyy ———E2——
(2.109)

(RL + Rouw)*
" . out
e voltage gain from Vj, to Vi in Fig. 2.35(b) is

in general contribute noise as
an ideal LC filter [Fig. 2.33(a)] as an example. Recall, however, that many RF
11-defined resistive input and output impedances

circuits are required to have we
g. For example, the filter placed between the antenna and

for proper matchin
the LNA can be viewed as depicted in Fig. 2.33(0). Our goal is 10 find the v
relationship between the noise figure and the loss of a passive circuit with A, = ﬂ___lg}_
resistive input and output impedances. Thus Vin Rp + Rowt (2.110)
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@ ®) e loss if the latter is defined as above. rk the noise figure is equal to
Figure 2.33 (a) LC attenuator, (b) lossy circnit matched at input and output. Rg
Consider a linear {ime-invariant passive reciprocal network as shown in v Lossy °
Fig. 2.34(a) with real input and output impedance. It can be proved [5] that if " -L_’: Circuit <—| =R, Vou
the output resistance 18 Routs then the noise Thevenin equivalent circuit is as T e i o
depicted in Fig. 2.34(b), with the PSD of the voltage source given by 4kT Rout- = Bin Rout
Note that Rout and hence V? generally depend on the source impedance, Rs. (a)
Rout Rg "
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. ®
) Thevenin noise model of (a)- Fi
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r noise figure calculation, (b) equivalent circuit of (a).

o524 (a) Passive reciprocal network, (b
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e overall noise figure
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Figure 2.36 Cascade of 1058y filter and LNA.
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where Py min is the minimum input level that achieves SN Ry, and B is ex-
pressed in hertz. Note that (2.120) does not depend on the gain of the system.

Assuming conjugate matching at the input, we obtain Pgs as the noise
power that Ry delivers to the receiver:

_ 4kTRg 1 (2.121)
RS = 1 R .
= kT (2.122)
= —174 dBm/Hz (2.123)
at room temperature. We thus simplify (2.120) as
Py min = =174 dBm/Hz 4+ NF + 10log B + SN Rpip. (2.124)

Note that the sum of the first three terms is the total integrated noise of the
system and is sometimes called the “noise floor.” Since Pj, min is a function of
the bandwidth, a receiver may appear very sensitive simply because it employs
a narrowband channel (but of course at the cost of low information rate.)

Dynamic Range Dynamic range (DR) is generally defined as the ratio
of the maximum input level that the circuit can tolerate to the minimum input
level at which the circuit provides a reasonable signal quality. This definition is
quantified in different applications differently. For example, in analog circuits
such as op amps and analog-to-digital converters the dynamic range is defined
as the ratio of the “full-scale” (FS) input level to the the input level for which
SNR = 1. The full scale is typically the input level beyond which a hard
saturation occurs and can be easily found by examining the circuit, and the
minimum input level is determined by the noise floor.

In RF design, on the other hand, the situation is more complicated. Con-
sider a simple common-source stage. How do we define the input full scale for
such a circuit? It is possible to define the FS as the input voltage for which
the transistor is at the edge of triode region. However, if a sinusoid with full-
scale swing is applied to the circuit, the output exhibits substantial distortion.
Also, the minimum signal must provide an SNR greater than unity, for example
SN Ry in Eq. (2.120). For these reasons, we base the definition of the upper
end of the dynamic range on the intermodulation behavior and the lower end
on the sensitivity. Such a definition is called the “spurious-free dynamic range”
(SFDR).

The upper end of the dynamic range is defined as the maximum input
level in a two-tone test for which the third-order IM products do not exceed
the noise floor. Expressing all of the quantities in dBm, we can rewrite (2.33)

-as

FPou = Pra,ou

Prips = P + :

: (2.125)
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(2.131)
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Rg

T

Figure 2.37 Equivalent series and parallel RC circuits.

Cp -‘E;’;E Rp

Before studying transformation techniques, let us consider the RC cir-
cuits of Fig. 2.37. The quality factor Q of the series combination, defined as
the impedance of the capacitor divided by the resistor, is equal to 1/(RsCsw),
approaching infinity as Ry goes to zero. Similarly, the Q of the parallel combi-
nation is equal to RpCpw. If Q is relatively high (greater than approximately
5) and the band of interest relatively narrow, then one network can be converted
to the other. The two circuits are equivalent if

Rp _ RsCgs +1
RpCps +1 Cus

’ (2.132)

or, for s = jw, RpCp = 1/(RsCsw?) and RpCp + RsCs — RpCg = 0.
Assuming Rp > Rg, we have Cp ~ Cg and

1

~ Rs(Ca)?’ (2.133)

Rp

where C = Cp & Cg. Thus, the conversion changes the value of the resistance
according to (2.133) while keeping the value of the capacitance nearly constant.
We can also write Rp ~ Q%RS, where Qg is the Q of the series network.
Similar results can easily be derived for RL counterparts.

Transformation of impedance can be accomplished by transformers. An
ideal transformer with a turn ratio of m scales an impedance by a factor m?. In
reality, however, high-frequency transformers exhibit loss, capacitive coupling
between the primary and the secondary, and even unwanted resonances, thus
complicating the design and requiring careful modeling. For this reason, we
study other approaches to impedance transformation.

Consider the network shown in Fig. 2.38(a), where the capacitive divider
is utilized to transform Rp to a higher value. With the assumptions of high
Q and narrow bandwidth, the parallel combination of Cp and Rp can be

converted to the series circuit shown in Fig. 2.38(b), where Cg =~ Cp and

Rs ~ 1/[Rp(Cpw)?]. Combining C; and Cs into C.q, we arrive at the circuit
of Fig. 2.38(c), which can be converted to the parallel network of Fig. 2.38(d),

With C,y & C1Cp/(C1+Cp) and R, ~ 1/[Rs(Ceqw)*] = (14+Cp/C1)*Rp.

Thus, the capacitive divider “boosts” the value of R p byafactor (1+Cp/Cy)?.
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