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Abstract— Linearity testing of analog-to-digital convert-
ers (ADCs) is very challenging and expensive due to the stringent
linearity requirement on the stimulus and the extremely long
test time. This paper introduces a novel method for ADC static
linearity testing, allowing the stimulus linearity requirement to be
significantly relaxed and the test time to be significantly reduced
compared to the state-of-art histogram method. Two nonlinear
but functionally related input signals are used as the ADC’s
excitation and a stimulus error removal technique is used to
recover test accuracy. With a segmented non-parametric integral
nonlinearity model, this method requires much fewer parameters
to accurately represent the nonlinearity. The proposed algorithm
has been extensively verified and correlated in simulations. This
method not only enables low-cost production testing but can also
be used for low-cost on-chip built-in self-test. This method is
limited to ADCs with segmented architecture such as SAR ADCs,
pipeline ADCs, and cyclic ADCs.

Index Terms— Analog-to-digital converters, integral nonlinear-
ity, differential nonlinearity, USER-SMILE, built-in self-test.

I. INTRODUCTION

THE analog-to-digital converter (ADC) is one of the most
important analog and mixed signal (AMS) components.

The ADCs have been deeply embedded in the modern system-
on-chip (SoC). With ever increasing applications in Internet
of things (IoT) and automotive, the ADCs’ volume has grown
significantly. Testing these ADCs is necessary to guarantee
the performance before shipment. However, it is challenging
and expensive to fully test the ADC’s performance due to
various reasons. With such a large volume, reducing the test
cost of ADCs becomes significant and necessary. In addition,
for some critical applications such as automotive, aerospace
and medical areas where reliability and safety requirements
are extremely high, one-time test may not be enough since
such applications usually last for decades and the degradation
of performance or environmental changes may cause a severe
influence on the system. There is a strong need to achieve
built-in self-test (BIST) capability to not only reduce the test
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cost, but also guarantee the reliability of the ADCs. The testing
of digital circuits has been well addressed with automatic
test pattern generation (ATPG) and logic BIST. However,
it remains a challenge to test the ADC on chip [1].

The ADC testing involves static linearity tests, such as
integral nonlinearity (INL) and differential nonlinearity (DNL)
and dynamic linearity tests, such as signal to noise ratio (SNR),
total harmonic distortion (THD) and spurious free dynamic
range (SFDR) [2]–[4]. Among these tests, the static linear-
ity test is the most time-consuming one. To test the ADC
static nonlinearity, the conventional histogram method uses a
highly linear ramp or sine wave generated from the precision
automated test equipment (ATE) [2], [3]. The signal source
is required to be 3 to 4 bits more linear than the device
under test (DUT) to accurately test the ADC since any error
in the input signal will be treated as part of the ADC’s
linearity error in the conventional histogram test. To test
ADCs beyond 16 bits, the signal generator has to be 19-bit
linear or better, which is expensive and difficult to achieve.
In addition, the ADC usually takes tens of samples per code
to reduce the noise effect in a histogram test. For 16-bit ADC,
there are 216 − 1 = 65, 535 transitions to be tested and the
number of samples will be close to or even more than millions,
which requires seconds or more test time depending on the
ADC’s sampling rate. Therefore, the cost associated with the
test time is very high.

All these requirements pose significant challenges to achieve
BIST. First of all, generating a highly linear signal on chip
for ADC testing is difficult or even impossible for a high
resolution ADC. The cost of building such a signal generator
could be much more than the ADC itself. In addition, the test
time is not saved if the conventional histogram test is still used.
To achieve BIST in an efficient way, these two challenges have
to be solved: the test stimulus linearity and long test time.
Significant work has been done to overcome these challenges
in the past decades. Researchers have achieved some limited
BIST features [5]–[18].

Some are addressing the stringent linearity requirement of
the input signal. In [14], the delta-sigma modulation technique
is applied to generate the highly linear input signal. However,
it is not easy to design such a signal generator as the
ADC’s resolution or speed increases. The design complexity
often increases the cost. A low-cost linear ramp generator
is proposed in [16]. However, it takes multiple calibrations
to achieve better precision and the linearity is still limited.
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In the contrast, some researchers have focused on algorithms
to relax the stimulus linearity requirement. In [15] and [19],
the stimulus error identification and removal (SEIR) algorithm
is proposed to test precision ADCs using nonlinear stimulus.
It has been proven that a 7-bit linear ramp signal can be used
to test a high resolution ADC and achieve more than 16 bits
accuracy with this method. Rather than using a linear ramp,
it uses two nonlinear ramps with a constant voltage shift in
between. The nonlinearity in the two ramps will be identified
by the algorithm and removed. Therefore, accurate linearity
test can be achieved with nonlinear signals. Many practical
applications have been presented in [18] and [20]–[22] for
SEIR. However, SEIR is based on the histogram method,
which means that the data acquisition time is still very long.

In addition to the input signal requirement, the test time
reduction is another challenge [23]–[27]. Fast Fourier trans-
form (FFT) test is used to estimate the ADC’s INL [24], [25].
A system identification approach is proposed in [28] to evalu-
ate the nonlinearity of a pipeline ADC. Design for test (DfT)
methods are introduced in [26] to reduce the test time of
calibrating the pipeline ADCs. Model-based testing for ADCs
are developed in [29]. Spectral and histogram methods are
combined in [30] to reduce the test time. Segmented polyno-
mial fitting method is developed in [31] with low resolution
input signal to test the ADC nonlinearity. In [32], a selective
code measurement method is introduced to reduce the test time
of SAR ADCs. In [17], a ramp generator based on servo-loop
method is developed to test the pipeline ADC with reduced test
time by the reduced-code linearity test techinuqe. However,
these methods reduce the test time by sacrificing other test
aspects such as test accuracy or test coverage compared to
histogram test. An ultrafast segmented model identification of
linearity errors [27] algorithm is proposed to take a system
identification approach to capture both linear and nonlinear
errors in the ADC. With the segmented non-parametric model,
the algorithm can reduce the test time by a factor of over
100 and still achieves a test accuracy superior to the histogram
method. However, this method still requires highly linear input
signal.

In this paper, the ultrafast stimulus error removal and
segmented model identification of linearity errors (USER-
SMILE) algorithm is presented. This paper is an expansion
based on [15]. The contribution of this paper includes a com-
plete derivation of the algorithm, improvement of algorithm,
error analysis and extensive simulations and correlations. The
USER-SMILE algorithm uses two nonlinear input signals for
the ADC under test. One signal is shifted by a constant voltage
with respect to the other nonlinear signal. By subtracting the
output codes of the ADC for the two signals, the exact value of
the input signal is canceled. The difference between the two
output codes represents the nonlinearity difference of these
two codes. This nonlinearity of ADC will be represented by a
segmented non-parametric INL model. The model parameters
will be identified with least square (LS) method. After the
identification of the model parameters, the full-code INL/DNL
can be constructed. This method is targeted for the built-in
self-test which can be used both in production testing to save
the test time and the test cost and in the field testing to realize

self test in the entire life time of the ADC. The proposed
method still has some limitations. Due to the segmented
model, this method will work for the ADCs with segmented
architectures such as SAR ADCs, Pipeline ADCs and Cyclic
ADCs. It will not work for flash ADC or Delta Sigma ADCs.

The remainder of this paper is organized as follows:
Section II presents the proposed algorithm with mathematical
equations. Section III provides the error analysis. Section IV
gives the simulation results and compares them with error
analysis. Section V discusses the limitation and the practical
implementation of the proposed method. Conclusion is drawn
in section VI.

II. USER-SMILE

In this section, the details of the USER-SMILE algorithm
will be presented. The modeling of the ADC nonlinearity
errors will be explained first. Then, it will be shown that
the input stimulus error will be removed by two functionally
related stimuli. At the end, the parameters of the ADC INL
model will be identified and used for constructing the INL.

A. Modeling of ADC Linearity Errors

To test the nonlinearity of the ADC, all transition levels need
to be identified to obtain the DNL and INL. Industry standard
histogram method uses a sine wave or a ramp signal which is
sufficiently linear (usually more than 3 bits) than the device
under test (DUT). And tens of samples per code are used
in order to average the noise. The histogram method shows
significant inefficiency. For high resolution ADCs, the number
of transitions increases exponentially. And the sampling rate
is usually slower for higher resolution ADCs.

However, for high resolution ADCs, the number of compo-
nents used to build the ADC is usually small. And these small
number of components determine the entire ADC’s perfor-
mance. The “segmented non-parametric” model is proved to
be an efficient way of modeling the ADC linearity errors [27]
with such characteristics. Instead of modeling the circuits
inside the ADC, it models the ADC’s INL with a segmented
non-parametric model. For an N-bit ADC, it uses a small
number of parameters instead of the 2N − 1 transition levels
to represent the INL.

The top plot of Fig.1 shows a typical INL plot of a binary-
weighted SAR ADC. The black vertical lines break the INL
into multiple same-width segments, defined as MSB (most-
significant bits) segment. For example, if the first 4 bits are
used to determine the segments, there will be 24 = 16 MSB
segments. Each MSB segment has an average INL value
which is defined as EM(k) for the k-th segment. These MSB
segmented errors, EM, are from linear errors or nonlinear
errors of the ADC or combination of them. With NM bits
used for MSB segments, the ADC is treated like a NM-bit
flash ADC.

For each MSB segment, there is a smaller INL curve (Fig.1).
Within this segment, the MSB code remains the same and only
lower bits are converting. For most ADCs except flash ADC
and sigma-delta ADC, the lower-bit code are determined with
the same sub-ADC or the same lower-bit circuits. Therefore,
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Fig. 1. Segmented Non-parametric INL model (top: full-code INL; middle:
ISB-segment INL; bottom: LSB-segment INL).

the errors contributed from the lower bits will repeat for each
MSB segment. As shown in Fig.1 top, all 16 segments have
the same shape. There is an assumption that the errors from
lower bits are not affected by the MSB code.

Similarly, the smaller segment, defined as ISB (inter-
medium significant bits), can be further broken into smaller
LSB (least-significant bits) segments. The ISB segments and
LSB segments are shown in the middle and the bottom of
Fig.1. The INL for code C can be then defined as

I N L(C) = EM(CMSB) + EI(CISB) + EL(CLSB) (1)

where C is the final ADC output code; EM, EI and EL are
the MSB, ISB and LSB segmented errors respectively; CMSB,
CISB and CLSB are the MSB, ISB and LSB segment codes.
In (1), the segment codes are decimal representations of the
corresponding binary codes. In the rest of the paper, the ADC
used in simulations and measurements are all binary-weighted
ADCs.

This model enables fewer number of parameters to represent
the full-code DNL/INL. In most cases, the ADC itself has
some nonlinear errors coming from parasitics and secondary
effects of transistors or capacitors. If these errors are large
enough, it will affect the INL shape. The MSB segmented
INL is treating the ADC as a flash. So the MSB INL model
can capture these errors.

B. Stimulus Error Removal

In Fig.2, a 3-bit ADC transfer curve is used to explain
the notation and the relation among the transition voltages,
the input signal and the quantization error. The solid curve is
the actual ADC transfer curve and the black dashed line is the
ideal transfer curve with same initial and end point. Suppose
that there is an input signal x and the ADC output code is
C = 4. The INL for code 4 is [T (3) − Ti (3)]/VLSB, where T
is the actual transition level, Ti is the ideal transition level and
VLSB is ideal 1 LSB voltage. For convenience, T (C) stands for
transition voltage from code C to code C + 1. So, T (0) is the
transition voltage from code 0 to code 1 and T (0) = Ti (0) in
this case. The middle for code C is defined as Vmid(C). And
the quantization error is therefore defined as nq = Vmid(C)−x

Fig. 2. 3-bit ADC Transfer Function.

Fig. 3. Algorithm Implementation.

when the sampled voltage is x and the output code is C .
We can then have the relation:

x + nq

= Vmid(C)

= T (C − 1) + VLSB · 1 + DN L(C)

2

= Ti (C − 1) + VLSB · {
I N L(C) + 1 + DN L(C)

2

}

= Ti (0) + VLSB · {C − 1 + I N L(C) + 1 + DN L(C)

2

}

= T (0) + VLSB · {
C + I N L(C) + I N L(C + 1) − 1

2

}
(2)

where DN L(C) = I N L(C + 1) − I N L(C).

In the precision ADC testing, the input linearity require-
ment is very high thus making the test cost very high.
For built-in self-test purpose, building such highly linear
input source is challenging or not practical. Instead, func-
tionally related excitation can be used to relax the linearity
requirement.

The implementation of the algorithm is shown in Fig.3. The
signal generator generates an output signal Vsig. In the first
time, the switch s1 is turned on and switch s2 is turned off.
The signal passes through an adder and the ADC input x1 =
Vsig + α. In the second time, the switch s2 is turned on and
the switch s1 is turned off. The signal generator is directly
connected to the ADC input so that x2 = Vsig. In these two
samples, x1 and x2 are unknown but there is a constant voltage
shift α between them.

x1 − x2 = α. (3)
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Considering the additive noise, the two input signals can be
expressed as

x1 + na1 + nq1

= T (0) + VL S B · {
C1 + I N L(C1) + I N L(C1 + 1) − 1

2

}
,

(4)

x2 + na2 + nq2

= T (0) + VL S B · {
C2 + I N L(C2) + I N L(C2 + 1) − 1

2

}

(5)

where na1 and na2 are the additive noise for x1 and x2. C1 and
C2 are the corresponding output codes in the two samples.

The amount of the voltage shift is also unknown and will
be identified in the proposed method. Subtract (5) from (4),
(6) can be obtained:

x1 − x2 + na1 − na2 + nq1 − nq2

VLSB
+ C2 − C1

= I N L(C1 + 1) + I N L(C1) − I N L(C2 + 1) − I N L(C2)

2
.

(6)

In (6), both na1 and na2 are random additive noise. The
subtraction of two independent random variables with same
variance will also give an random term with doubled variance.
nq1 and nq2 are the quantization error for these two conver-
sions. However, the quantization error is not white. Assuming
that the additive noise is large enough (more than 0.3 LSB
rms), the entire term na1−na2+nq1−nq2 can be treated as one
random noise because the quantization error can be effectively
“whitened” by the additive noise [33]. So, these four terms can
be replaced by a single variable nall. Combining (3) and (6)
and replacing the noise terms, we can obtain

α/VLSB + nall + C2 − C1

= I N L(C1 + 1) + I N L(C1) − I N L(C2 + 1) − I N L(C2)

2
.

(7)

In this equation, we can notice that the input informa-
tion is no longer needed. The input linearity requirement is
completely relaxed. The voltage shift α will be identified;
the output codes are already available; and the INL are the
unknowns to be solved.

C. Error Identifications and INL Construction

For an N-bit ADC, there are 2N − 1 transition levels and
there are 2N −3 INL values (with end-point fitting, the first and
last transitions are both 0s by definition). With the “segmented
non-parametric” INL model, the number of unknowns to
represent the full-code INL can be significantly reduced as
introduced in previous sections. Replacing the INL in (7) with

the INL model (1), (8) can be obtained:

α/VLSB + nall

= C1 − C2

+ I N L(C1 +1)+ I N L(C1) − I N L(C2 + 1) − I N L(C2)

2
= C1 − C2

+ EM((C1+1)MSB)+EI((C1+1)ISB)+EL((C1 + 1)LSB)

2

+ EM(C1MSB) + EI(C1ISB) + EL(C1LSB)

2

− EM((C2+1)MSB)+EI((C2+1)ISB)+EL((C2 + 1)LSB)

2

− EM(C2MSB) + EI(C2ISB) + EL(C2LSB)

2
(8)

where C1MSB stands for the MSB code of code C1 and (C1 +
1)MSB stands for the MSB code of code C1 +1. ISB and LSB
codes are defined in the same way.

For each pair of input signals, one such equation can be
obtained. With M pairs of input signals, M equations will be
formed and M is much larger than the number of unknowns
to be solved. C1 and C2 are then two vectors of output codes.
For NM-bit MSB, NI-bit ISB and NL-bit LSB segmentation,
there are total 2NM +2NI +2NL unknowns. Take a 12-bit ADC
as an example, 4-4-4 (MSB-ISB-LSB bits) segmentation has
only 48 unknowns.

The amount of voltage shift α is still unknown. With a
large set of output codes, the value of α can be estimated by
the average value of C1 − C2 for quick estimation. A better
estimation is to make the voltage shift as an unknown and iden-
tify it in the least square method together with the segmented
model parameters. The LS solutions for these unknowns can
be expressed as
{

ÊM(0), ÊM(1), . . . , ÊI(0), ÊI(1), . . . ÊL(0), ÊL(1), . . . , α̂
}

= arg min

{ M∑

k=1

[ α

VLSB
+ C2(k) − C1(k)

+ I N L(C2(k) + 1) + I N L(C2(k))

2

− I N L(C1(k) + 1) + I N L(C1(k))

2

]2
}

(9)

with the condition that I N L(0) = I N L(2N − 1) = 0 for an
N-bit ADC.

With all these model parameters identified, the full-code
INL can be constructed using (1):

ˆI N L(C) = ÊM(CMSB) + ÊI(CISB) + ÊL(CLSB). (10)

Since the full-code INL has been obtained, the full-code
DNL can be derived too.

ˆDN L(C) = ˆI N L(C + 1) − ˆI N L(C) (11)

With this method, the input doesn’t need to hit all the codes.
With the hit codes and the ADC segmented architecture, those
codes that are not hit can be predicted with the INL segmented
models. Therefore, even missing codes can be identified.
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III. ERROR ANALYSIS

There are several factors that affect the effectiveness or the
performance of the USER-SMILE method. Although the lin-
earity of the input signal is significantly relaxed, there are
certain requirements on the input signals. All segments have to
be hit. Otherwise, there will be no information on that segment
and least square method will fail to solve the equation. Each
segment should get sufficient hits to average the noise effect
which will be analyzed in the subsection. In addition to the
input signal requirement, four most significant error sources
are analyzed including the modeling error, the additive noise,
the voltage shift nonconstancy and the quantization error.
These error sources will affect the estimation accuracy of the
algorithm. The USER-SMILE directly models and identifies
the INL of the ADC. Therefore, the maximum DNL estimation
error can be twice as the maximum INL estimation error.

A. Effects of Unmodeled Error in the INL Model

In the segmented non-parametric model, the INL curve for
the lower bits is assumed to be identical in each MSB segment.
However, this may not be true. If the ADC has large nonlinear
errors, the lower bits will also be affected. This subsection
evaluates the estimation error caused by these unmodeled
nonlinear errors.

Define the INL of the ADC as two components: the linear
component (I N L lk) and the nonlinear component (I N Lnlk).
The full-code INL can be expressed as

I N Lk = I N L lk + I N Lnlk . (12)

For the linear component, it is from the capacitor mis-
matches, which results in a segmented INL shape. For the
nonlinear component, it is mainly from the sampling capaci-
tor voltage coefficient, nonlinear parasitics and other voltage
dependent effects, which results in a smooth INL shape. The
segmented linear errors are modeled by the proposed method.
But the nonlinear error is not directly modeled. Define the
nonlinear fnl(x) as a function of the input voltage x and the
unit is LSB. When the input voltage x ∈ [Tk−1 Tk) and
the output code is k, the amount of nonlinearity at code k is
I N Lnlk = fnl(Tk−1). For the j -th MSB segment, define the
middle point of this segment as xmid( j). The Taylor series of
the nonlinear function at this segment can be expressed as

fnl(x) = fnl(xmid( j))

+ f �
nl(xmid( j))

[
x − xmid( j)

]

+
∞∑

n=2

f (n)
nl (xmid( j))

n!
[
x − xmid( j)

]n

≈ fnl(xmid( j))

+ f �
nl(xmid( j))

[
x − xmid( j)

]
(13)

where the higher order terms are ignored for approximation
purpose. In this equation, the first part of the equation is
the constant part which will be captured by the segmented
INL model. The value of the second part changes as the
slope changes, which is not modeled by the proposed method.
Within one MSB segment, the difference between the max-
imum and minimum nonlinear component can be as large

as f �
nl(xmid( j)) · VMSB, where VMSB is voltage range of one

MSB segment. Therefore, the absolute error is as large as
f �
nl(xmid( j)) · VMSB/2 with respect to the middle of this

segment. With INL end-point fitting, the maximum unmodeled
error can be as large as f �

nl(xmid( j)) · VMSB. Over the entire
input range, the absolute value of first derivative of each
segment is bounded by the maximum absolute derivative of
the fnl over all j :

abs[ f �
nl(xmid( j))] ≤ max

{
abs[ f �

nl(x)]}. (14)

Therefore, the maximum absolute unmodeled error is less than
max

{
abs[ f �

nl(x)]} · VMSB with end-point fitting, which can be
used to evaluate how much the nonlinear error contributes to
the final INL estimation error.

For a 16-bit binary-weighted ADC with 6-5-5 segmentation,
there are 26 = 64 segments for MSB codes and each MSB
segment corresponds to the voltage range of 1/64 (input
range is normalized to 1). Suppose that the nonlinear function
fnl(x) = 10x2(x − 1), and the maximum absolute I N Lk

caused by the nonlinear component is about 1.5 LSB. The
maximum slope of this function is around 10. Therefore,
the unmodeled error is less than max

{
abs[ f �

nl(x)]}·VMSB/2 =
10 ·1/64/2 = 0.078 LSB with best fitting and 0.156 LSB with
end-point fitting. This unmodeled error is very small and can
be further reduced by increasing the number of MSB segments.

B. Additive Noise in the Input Signals

To analyze the additive noise effect, rewrite (8) into a
complete matrix form:

α/VLSB + nall − C1 + C2 = H

⎡

⎣
EM
EI
EL

⎤

⎦ (15)

where H is a M ×K matrix. M is the total number of samples
in each ramp. K is the total number of unknown for EM, EI
and EL. In the H matrix, each row has three locations of +1/2
corresponding to the code C1 +1’s MSB, ISB and LSB codes,
three locations of +1/2 corresponding to the code C1’s MSB,
ISB and LSB codes, three locations of −1/2 corresponding
to the code C2 + 1’s MSB, ISB and LSB codes, and three
locations of −1/2 corresponding to the code C2’s MSB, ISB
and LSB codes. Then, (15) is the matrix expression for (8) with
M sets of data. With the least square method, the segmented
model parameters are estimated as:

⎡

⎣
ÊM

ÊI

ÊL

⎤

⎦ = (H T H )−1H T (α/VLSB − C1 + C2). (16)

In this equation, the noise is effectively averaged. In order
to evaluate the exact effect of noise on the final estimation,
the noise term nall needs to be included. Define the estimation
error vector to be eM , eI and eL for MSB, ISB and LSB
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segmented INL respectively.
⎡

⎣
ÊM

ÊI

ÊL

⎤

⎦ =
⎡

⎣
EM
EI
EL

⎤

⎦ −
⎡

⎣
eM
eI
eL

⎤

⎦

= (H T H )−1H T (α/VLSB + nall − C1 + C2)

−(H T H )−1H T nall. (17)

Therefore, the estimation error caused by the noise is
expressed as:

⎡

⎣
eM
eI
eL

⎤

⎦ = (H T H )−1 H T nall. (18)

To evaluate the relation between the estimation error with
the noise variance, some matrix transformations are performed.
Multiply both sides by their transpose:
⎡

⎣
eM
eI
eL

⎤

⎦
[
eT

M eT
I eT

L

] = (H T H )−1H T nalln
T
all H

(
(H T H )−1)T

.

(19)

In the left side of (19), the diagonal terms are the square of
each estimation error.
⎡

⎣
eM
eI
eL

⎤

⎦
[
eT

MeT
I eT

L

]

=
⎡

⎢
⎣

eM(0)2 · · · eM(0) · eL(2NL − 1)
...

. . .
...

eM(0) · eL(2NL − 1) · · · eL(2NL − 1)2

⎤

⎥
⎦ .

(20)

Similarly, the noise vector multiplied by its transpose is

nalln
T
all =

⎡

⎢
⎣

nall(1)2 · · · nall(1) · nall(M)
...

. . .
...

nall(1) · nall(M) · · · nall(M)2

⎤

⎥
⎦ . (21)

There are M sets of noise terms and each noise term has
a variance σ 2

n . Assume the noise is random with 0 mean and
each noise term is independent of the other noise terms. The
expected value of nalln

T
all matrix is

E
[
nalln

T
all

] =
⎡

⎢
⎣

nall(1)2 · · · 0
...

. . .
...

0 · · · nall(M)2

⎤

⎥
⎦

= σ 2
n IM . (22)

where IM is the M × M identity matrix. The diagonal terms
of σ 2

n IM are σ 2
n while other terms are all zeros.

In the right side of (19), H matrix is a constant matrix for a
given input signal. The expected values of both sides become:

E

{
⎡

⎣
eM

eI

eL

⎤

⎦[
eT

M eT
I eT

L

]
}

= σ 2
n (H T H )−1 H T H

(
(H T H )−1)T

= σ 2
n

(
(H T H )−1)T

= σ 2
n (H T H )−1. (23)

Therefore, the expected value of the estimation error’s
squares are the product of noise variance and the diagonal
elements of the (H T H )−1 matrix.

E

{
⎡

⎢
⎣

e2
M(0)

e2
M(1)
...

⎤

⎥
⎦

}
= σ 2

n · diag{(H T H )−1}. (24)

The H matrix actually depends on the input signal
waveform and the voltage shift added to the input, as well as
the segmentation in the INL model. To evaluate the sensitivity
from the noise to the estimation error, the ADC and the input
signal are assumed to be approximately linear for simplicity.
Nonlinear ADC or nonlinear input will slightly change the
sensitivity but the effect is very small. For a 12-bit ADC
with 4-4-4 segmentation (4-bit MSB, 4-bit ISB and 4-bit
LSB) and two 1 hit per code ramps, the maximum value
for the diagonal elements in the (H T H )−1 matrix is around
0.02. So, the variance of INL estimation is less than 0.06σ 2

n
(worst case is when MSB, ISB and LSB have the same
maximum variance). Therefore, the 3 sigma of the estimation
error due to noise is less than 0.75σn . For 16-bit ADC with
6-5-5 segmentation and two 1 hit per code ramps as inputs,
the 3 sigma of the INL estimation error due to noise is less than
0.4σn. For comparison, the histogram ramp test with h hits
per code has a estimation uncertainty variance being σ 2

n /h.
The 3 sigma of 20 hits per code histogram ramp test is around
0.67σn . So, the USER-SMILE algorithm produces a similar
estimation error due to noise but with 10 times less data.

C. Effects of the Voltage Shift Between Two Signals

The constancy of the voltage shift is critical in the USER-
SMILE algorithm. Recent researches have proposed various
low-cost highly-constant shift generators [20], [21].

Define the voltage shift as α = ᾱ + αe, where ᾱ is the
mean value of α and the αe is the error part. Similar to (15),
the estimation error can be obtained with only the error of the
voltage shift considered

α/VLSB − C1 + C2

= ᾱ/VLSB + αe/VLSB − C1 + C2

= H

⎡

⎣
EM
EI
EL

⎤

⎦ = H

⎡

⎣
ÊM

ÊI

ÊL

⎤

⎦ + H

⎡

⎢
⎣

e(α)
M

e(α)
I

e(α)
L

⎤

⎥
⎦ , (25)

and

αe/VLSB = H

⎡

⎢
⎣

e(α)
M

e(α)
I

e(α)
L

⎤

⎥
⎦ (26)

where e(α)
M , e(α)

I and e(α)
L are the estimation errors for EM,

EI and EL respectively due to the nonconstancy part of the
voltage shift.

As the input signal changes (such as sine wave or ramp),
the LSB and ISB segments will change faster and the MSB
segments will change slower. If there is an error in the
voltage shift within a small input voltage range, it is likely
to hit different ISB and LSB segments so that the error is
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evenly distributed in different segments. Therefore, the shift
nonconstancy effect on ISB and LSB is small. To analyze the
effect of shift nonconstancy on the MSB segments, the ISB
and LSB estimation errors are assumed to 0 and (26) can be
approximated as:

αe/VLSB ≈ HM

[
e(α)

M

]
(27)

where HM is the first 2NM columns of the H matrix. In most
cases, output code C1 and C1 + 1 are in the same MSB
segment. C2 and C2 + 1 are also in the same MSB segment.
So, in the HM matrix, each row has one “-1” and one “+1”
in the C1MSB and C2MSB locations respectively. For different
types of input signals, the MSB segments change differently.
For a ramp input, C1MSB and C2MSB increase from 0 to the
maximum. For a sine wave input, C1MSB and C2MSB go up
and down periodically. Regardless of the input signal type,
the HM matrix can be sorted in ascending order according to
the ADC’s output codes. The corresponding αe vector will be
rearranged according to HM’s sorting sequence. An example
of HM matrix after sorting is shown below.

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

−1 1 0 0 · · · 0
−1 0 1 0 · · · 0
0 −1 1 0 · · · 0
0 −1 0 1 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

. (28)

Each row has one “−1” and one “+1”. The column index
of the “+1” location is the value of C1MSB. Group all rows
with the same C1MSB and take the average value. For example,
the 2nd row and the 3rd row are summed and averaged since
the locations of “+1” or the value of C1MSB are the same. The
average value for corresponding shift error with C1MSB = k
is defined as ᾱe(k). Repeat this averaging process for all the
MSB codes. The smallest C1MSB location is the second column
since it will be canceled by the “−1” in the first column if
C1MSB is also in the first column. Since all the error differences
are relative, eM(0) can be defined to be 0. Therefore, the first
column of the new matrix is removed. If eM(0) is not 0, all
the errors will add a constant value, which doesn’t change the
INL. Then, a new lower triangle matrix can be formed with
all ones in the diagonal.
⎡

⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎣

1 0 0 · · · 0
−l2,1 1 0 · · · 0
−l3,1 −l3,2 1 · · · 0

...
...

... · · · ...
−lk,1 −lk,2 −lk,3 · · · 0

...
...

... · · · ...

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎦

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎣

eM(1)
eM(2)

...
eM(k)

...

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎦

≈

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎣

ᾱe(1)
ᾱe(2)

...
ᾱe(k)

...

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎦

/VLSB.

(29)

All the elements above the diagonal are zeros. And for all
the elements below the diagonal, they satisfy the following
conditions

0 ≤ lk,i ≤ 1 (30)

for all i < k and 1 < k < 2NM .

0 ≤
k−1∑

i=1

lk,i ≤ 1 (31)

for all 1 < k < 2NM .
For a lower triangle matrix, forward substitution can be used

to solve for all the unknowns.

eM(1) ≈ ᾱe(1),

eM(2) ≈ ᾱe(2) + l2,1eM(1),

...

eM(k) ≈ ᾱe(k) +
k−1∑

i=1

[
lk,i eM(i)

]
. (32)

The maximum absolute value for αe is max{|αe|}. Taking
the absolute value for both sides, the inequation can be
obtained:

|eM(k)| ≤ max{|αe|} +
k−1∑

i=1

[
lk,i |eM(i)|], (33)

with the initial condition

|eM(1)| ≤ max{|αe|}. (34)

Therefore, the bound for the k-th MSB’s estimation error is

|eM(k)| ≤ k · max{|αe|}. (35)

Define that the constancy of the voltage shift as the ratio
of the voltage shift error over the average shift value. Take a
12-bit ADC as an example. With 4-bit as the MSB segment
and the voltage shift is around 1 MSB, the maximum error is
less than 16 × max{|αe|}. To achieve 0.2 LSB error from the
USER-SMILE algorithm, the voltage shift error should be less
than 0.0125 LSB in 12-bit level, which is 50ppm for the shift
constancy. For a 16-bit ADC with 6-bit as the MSB segment,
the constancy requirement is 3 ppm. The previous work has
demonstrated that voltage shift constancy can achieve below
1 ppm [20].

D. Effects of Quantization Error

The USER-SMILE algorithm enables less data than his-
togram test. In all previous assumptions and derivations,
we assume that the total noise is random with 0 mean.
However, with 1 hit per code or less than 1 hit per code input
signal, the quantization error is not random. With more hits
per code like histogram, the average quantization error is less.

If the standard deviation of the additive noise is comparable
to 1 LSB or fraction of LSB, the effect of the quantization error
will be similar to random noise, which means it is effectively
whitened. If the test environment is ultra low-noise and the
ADC is also designed to have a very low noise, additional
dithering is needed to whiten the quantization error [33], [34].
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Fig. 4. INL Modeling Error.

Fig. 5. 16-bit ADC INL Estimation (1 LSB noise).

IV. SIMULATION RESULTS

In this section, extensive simulations have been done to
verify the effectiveness and accuracy of the proposed algo-
rithm. The estimation errors are compared with the analysis
in section III. The SAR ADC is particularly modeled due
to its wide usage, high resolution and low power features.
The behavior model simulation has the advantage of statistical
analysis as well as the control over ADC performance. Since
everything is mathematical model, the ADC INL/DNL can be
theoretically derived. In all the following simulations, 16-bit
ADC with 6-5-5 segmentation is modeled unless specified. The
input signals are two 1 hit/code nonlinear ramp with around
8-bit linearity performance.

In the SAR ADC, multiple non-idealities are modeled
including capacitor random mismatches, voltage dependent
coefficient in switch and capacitors, input-referred noise and
voltage shift nonconstancy. When analyzing one error source,
the other error sources will be removed or minimized. In addi-
tion, the capability of identifying missing codes is explained
at the end of this section.

A. Modeling Error
In the USER-SMILE algorithm, it is assumed that the

ISB or LSB error terms are identical across the entire full

Fig. 6. 16-bit ADC INL Estimation Error(1 LSB noise).

codes for the same ISB or LSB code. However, this may not
be the case if the ADC nonlinearity has voltage dependency
such as capacitor voltage coefficient or voltage dependent par-
asitics. A high order polynomial function models the voltage
dependency effect. In this test, the noise is set to 0 and the
voltage shift is ideal.

In the previous section, the function of fnl(x) = 10x2(x−1)
is used. In order to exaggerate the modeling error effect,
a 5 time larger nonlinear function (more than 7.5 LSB) is
used to represent the smooth nonlinearity of the ADC. Fig.4
shows the INL comparison, the introduced nonlinear error
and the estimation error. Based on the analysis, the maximum
unmodeled error from USER-SMILE is 0.78 LSB with end-
point fitting. In the simulation result, a boundary of ±0.78 LSB
is shown and the estimation error is within the error boundary.

B. Noise Effect

Random noise has a direct impact on the USER-SMILE
estimation accuracy. In the previous analysis, the INL estima-
tion error has a 3-sigma of 0.4σn . For comparison, the ADC
is also tested with a 20 hits/code linear ramp by histogram
test. The 3 sigma estimation error for histogram is 0.67 σn .
Random noise with 1 LSB sigma (σn) is added to the input.
The voltage dependency and voltage shift constancy are set
to 0. Both USER-SMILE and histogram INL estimations are
shown in Fig. 5 together with the theoretical true INL. Both
histogram test and USER-SMILE align well with the theo-
retical INL. But the USER-SMILE result shows better noise
averaging.

The INL estimation errors for this test case are plotted
in Fig.6. The USER-SMILE INL estimation errors are all
within the 3-sigma estimation boundary (±0.4σn). For the
histogram test, there are a few codes beyond the 3-sigma
boundary (±0.67σn), which is reasonable considering around
65k codes for a 16-bit ADC.

SAR ADCs are randomly generated to further verify
the noise effect. For each ADC, the worst INL estimation
across all 65,536 codes is selected. Therefore, 1000 worst
INL estimation errors (absolute value) can be plotted in Fig.7
for both USER-SMILE and histogram test. In this plot,
the 6-sigma lines are drawn (0.8σn for USER-SMILE, 1.34σn
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Fig. 7. 1000-time 16-bit ADC INL Estimation Error(1 LSB noise).

Fig. 8. INL Estimation Error with 3ppm nonconstancy.

for histogram). All the 1000 simulations are below the
6-sigma lines for both USER-SMILE and histogram.

C. Voltage Shift Effect

The constancy of the voltage shift is critical in the
USER-SMILE algorithm. As analyzed in the earlier section,
to achieve 0.2 LSB estimation error, the shift constancy needs
to be less than 3ppm for a 16-bit ADC. In this example,
we generate a 3ppm step function as the nonconstancy of the
voltage shift while other error sources are all set to be 0. This
voltage shift error results in a “bell”-shaped estimation error
as shown in Fig.8. From the simulation, the estimation errors
are all within the ±0.2 LSB error limits.

D. Missing Codes Identifications

The USER-SMILE algorithm can estimate the full-code INL
with even less than 1 hit/code input signal, which means some
codes may not be hit in the test. Thanks to the segmented

Fig. 9. Missing codes at the boundary.

INL model, even some codes are not hit, their linearity can
still be accurately predicated from other codes. Missing codes
in the ADC is usually a very important specification. Some
special cases are generated to illustrate the missing codes
identification in the USER-SMILE. In this example, 12-bit
ADCs with 4-4-4 segmentation are used for simplicity. For
SAR ADCs, define the most significant capacitor as C1 and
the least significant capacitor as C12.

In the first case, suppose the 4-th MSB capacitor (C4) is
smaller than expected, causing missing codes at major transi-
tions (Fig.9). Therefore, code 255 will be missing. As a result,
all the transition voltages for the second MSB segment (from
code 256 to code 511) will be lower, causing the segmented
error of this MSB segment (eM (1)) to be lower. From the
Fig.9, the INL from code 256 to 511 is around 1 LSB lower
than the INL from code 0 to 255. The missing codes occur
every time when C4 is selected (every 512 codes). Therefore,
the next missing code is 767 (255+512). For the USER-SMILE
algorithm, although code 255 is never hit, the INL(255) can
be estimated by:

ˆI N L(255) = eM (0) + eI (15) + eL(15) (36)

where eM (0), eI (15) and eL(15) can be estimated from other
codes. When constructing the INL, if the beginning of the
MSB segment is more than 1 LSB lower than the end of the
previous MSB segment, a missing code is identified. The DNL
for that code will be set to −1 and the INL will be updated
accordingly.

In the second case, the missing codes occur in the middle
of a MSB segment rather than the MSB major transitions.
In Fig.10, the 5-th capacitor (C5) is smaller than normal and
causes a missing code at code 127. It will be identified in
the ISB segmented errors. This missing code will repeat in
every MSB segment regardless of the MSB errors. The next
appearance will be 383 (127+256).

V. DISCUSSION

The segmented INL model can accurately represent the INL
for ADCs with segmented architecture. However, for low-
resolution high-speed flash ADCs, the INL is not segmented.
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Fig. 10. Missing codes at the middle.

Therefore, the segmented INL model cannot be used to esti-
mate the linearity for flash ADCs. The INL for delta sigma
ADCs is also not segmented. But high resolution delta sigma
ADCs are never tested for full-code INL/DNL [27].

In this paper, the segmented model is targeted for binary-
weighted ADCs. For other segmented ADCs such as Pipeline
ADCs, Cyclic ADCs and subradix-2 SAR ADCs, some modifi-
cations are needed to the segmented model. For these ADCs,
the segmentation of the INL is not determined by the final
output codes due to calibration or redundancy. Instead, the raw
code directly from the comparators or shift registers should be
used to determine the segmentation. In (8), C1 and C2 are the
final codes but the MSB/ISB/LSB codes should be obtained
from the raw code.

The proposed method can be implemented as on-chip BIST
in a low-cost way. The linearity requirement for the signal
generator has been significantly relaxed. Therefore, the design
of such signal generators is simplified. DACs such as R2R
DACs or simple ramp generators can be chosen as the signal
generators [22]. For embedded ADCs, there is usually a DAC
in the same SoC, which can be reused as the signal generator.
The key of the implementation is the voltage shift generation.
It has been shown in many literature that generation of highly
constant voltage shift can be achieved on-chip[18], [20]–[22].

VI. CONCLUSION

A fast and cost-effective method for ADC linearity test is
presented in this paper. The USER-SMILE algorithm allows
the stimulus signal’s linearity requirement to be significantly
relaxed and the test time to be reduced by orders of magnitude
compared to the state-of-art histogram method, thus greatly
reducing the test cost. The simulation results demonstrate
that the USER-SMILE can achieve superior test coverage
and accuracy. With the USER-SMILE algorithm, a new BIST
solution can be practical, which doesn’t require highly accurate
and expensive ATE as the signal generator. Furthermore,
it saves the test time and simplifies the test board and interface
design.

To actually implement this method as on-chip hardware,
the signal generator design is simplified. The voltage shift

generator can be implemented in a cost-effective way. The
algorithm part can be processed in the ATE for production
testing. Or it can be implemented as software in the CPU of a
system-on-chip (SoC) or designed as a hardware block which
doesn’t consume CPU resource. The extra cost introduced is
well compensated by the test cost reduction.

With on-chip signal generator and on-chip computation in
SoC, it not only saves the test cost, but also enables the
field testing. For example, the BIST can be performed every
time the chip is powered on. For critical applications such as
automotive, this self-test feature is very important to guarantee
the functionality and performance of the electronic system over
the product’s life time. In addition, the self-test results can
be further used for calibration purposes which can repair and
improve the ADC performance.
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