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Quiz 4
Obtain the transfer function T(s) for the circuit 
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Quiz 4
Obtain the transfer function T(s) for the circuit 
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Test Equipment in the EE 230 Laboratory

984 Pages !

•

 

The documentation for the operation of this equipment is extensive
•

 

Critical that user always know what equipment is doing
•

 

Consult the users manuals and specifications whenever unsure

Review from Last Time



Key Theorem:  

Theorem:  The steady-state response of a linear network to a sinusoidal 
excitation of  VIN =VM

 

sin(ωt+γ) is given by

( ) ( ) ( )( )OUT mV t V T jω sin ωt+γ+ T jω= ∠

This is a very important theorem and is one of the major reasons

 

phasor

 
analysis was studied in EE 201

The sinusoidal steady state response is completely determined by

 

T(jω)

The sinusoidal steady state response can be written by inspection from the

and                         plots ( )T jω ( )T jω∠

Ps=jω
T (s) = T (jω)

Review from Last Time



Solution of Differential 
Equations

Set of Differential 
Equations

Circuit Analysis 
KVL, KCL

Time Domain Circuit

Xi(t) = XMsin(ωt+θ)

XOUT(t)

Solution of Linear 
Equations

Set of Linear 
equations in jω

Circuit Analysis 
KVL, KCL

Phasor Domain Circuit

Xi(jω)

XOUT(jω)

Phasor Transform

Inverse Phasor 
Transform

Solution of Linear 
Equations

Set of Linear 
equations in s

Circuit Analysis 
KVL, KCL

s-Domain Circuit

Xi(S)

XOUT(S)

s Transform

Inverse s Transform

T(s) TP(jω)

Formalization of sinusoidal steady-state analysis
Review from Last Time



Formalization of sinusoidal steady-state analysis -
 

Summary

( ) ( ) ( )( )OUT MX t X T jω sin ωt + θ + T jω= ∠

Solution of Linear 
Equations

Set of Linear 
equations in s

Circuit Analysis 
KVL, KCL

s-Domain Circuit

Xi(S)

XOUT(S)

s Transform

Inverse s Transform

T(s)

XOUT(t)

Xi(t)( ) ( )IN MX t X sin ωt + θ =

s-domain The Preferred Approach

L sL
1C sC

→

→

All other components unchanged

Review from Last Time



Gain, Frequency Response, Transfer Function

IN OUT

Assume the transfer function is T(s)

•

 

Linear system can be called an amplifier, filter, or simply a linear system

•

 

Gain is, by definition,  |T(jω)|   (tells how sinusoids propagate through 
system)

•

 

Arg

 

(T(jω) is, by definition the phase of system (gives phase shift of sinusoid)

•

 

Plots of |T(jω)|  and Arg

 

(T(jω)  widely used to characterize the frequency 
response of the system



Gain, Frequency Response, Transfer Function

IN OUT

Assume the transfer function is T(s)

Transfer functions of linear system with finite number of lumped

 

elements is a 
rational fraction in s with real coefficients

For any realizable system, 

Order of transfer function is equal, by definition, to n

n often referred to as the order of the system

( )

m
i

i
i=0
n
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i=0

a s
T s

b s
=
∑

∑
m  n≤



Step Response of First-Order Networks

IN OUT

Many times interested in the step response of a linear system when the 
system is first-order

XOUT

 

(t)=?

0

C

t-T
t

OUTX = F + (I-F)e
− I is the intital

 

value, F is the final 
value and tC

 

is the time constant

For any first-order linear system, the unit step response is given by



Step Response of First-Order Networks

XOUT

t

I

F
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C
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−



Step Response of First-Order Networks
0

C

t-T
t

OUTX = F + (I-F)e
−

( )( ) ( )1
eI-F 1- 0.63 I-F•

0 0 C

Effects of time constant shown for decaying step response



Step Response of First-Order Networks
0

C

t-T
t

OUTX = F + (I-F)e
−

Observe the step response completely determined by the 3 parameters, {I,F,tC

 

}

In the frequency domain,any

 

first-order system can be expressed as

( ) ( )N s
T s  = 

s-p

where N(s) is either a zero-order of first-order polynomial in S 

( ) KT s  = 
s-p ( ) 1

s-zT s  = K
s-p

or

Note the first-order transfer function is characterized by either 2 parameters
{k,p} or 3 parameters {K1

 

, z, p}

Thus the 3 step response parameters must be expressible in terms

 

of the 
2 or 3 parameters of the transfer function



Step Response of First-Order Networks
0

C

t-T
t

OUTX = F + (I-F)e
−

( ) KT s  = 
s-p

( ) 1
s+zT s  = K
s-por

Thus the 3 step response parameters must be expressible in terms

 

of the 
2 or 3 parameters of the transfer function

-1
Ct =-p

The expressions for F and I are left to the student

Often can be obtained by inspection from the circuit



Step Response of First-Order Networks

0

C

t-T
t

OUTV = F + (I-F)e
−

-1
Ct = -p =RC

Example:

( )  KT s  = 
s-p

Obtain the step response of the circuit 
shown if the step is applied at time 
T=1msec and prior to VOUT

 

(t)=0 for 
t<1msec.  Assume R=1K, C=0.1uF

Solution:

( )  1T s  = 
1+RCs

( )
1 RCT s  = 1s+ RC

1p = - RC

F=1V

I=1V
t-.001
RC

OUTV = 1 + (-1)e
−

t-.001
RC

OUTV = 1 - e
−This is first order and of the form:

∴

Thus, the output can be expressed as:



Impedance and Conductance Notation

Impedance Notation for RLC
in s-domain

Conductance  Notation for RLC
in s-domain

R

sL

1
sC

G

sC

1
sL

Symbol

Conductance = 1/Impedance

Symbols the same, often more convenient to use conductance notation



Impedance and Conductance Notation

1
s C

s-domain with impedance notation s-domain with conductance notation

Example:



Impedance and Conductance Notation

1
s C

Analysis, using KCL, often much faster using conductance notation

 OUT IN
1 1 1+  = 1 R RsC

⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
V V 

( )  OUT

IN

1
RT s  =  

1 1+1 RsC

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

V
=

V 

( )
1
RT s  =  1sC+

R

( ) ( ) OUT INsC+G  = GV V 

( )  OUT

IN

GT s  =  
sC+G

V
=

V 

Example:



Impedance and Conductance Notation
Circuit Analysis with Impedance Notation (Z)  and Conductance Notation (G)

Z1 Z
2

Z
3

Z
k

V1

V2

V3

Vk

Vx

Ohms Law V=I Z• I=V G•

KCL ( ) ( ) ( ) ( )X 1 X 2 X 3 X k
1 2 3 k

1 1 1 1V -V + V -V + V -V +...+ V -V =0
Z Z Z Z

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

X 1 2 3 k
1 2 3 k 1 2 3 k

1 1 1 1 1 1 1 1V + + +...+  = V +V +V +...+V
Z Z Z Z Z Z Z Z

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

1

k k

X k
i=1i k

1 1V   = V  
Z Zi=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ ∑

Often faster to use the second form

Node with impedance notation

Formally:



Impedance and Conductance Notation
Circuit Analysis with Impedance Notation (Z)  and Conductance Notation (G)

Ohms Law V=I Z• I=V G•

KCL ( )X 1 2 3 K 1 1 2 2 3 3 k kV G +G +G +...+G  = V G +V G +V G +...+V G

1

k k

X i i i
i=1

V G   = VG  
i=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ ∑

KCL is often the fastest way to analyze electronic circuits

G
2

G
3

G
k

Node with conductance notation

Conductance notation is often much less cumbersome than impedance notation
when analyzing electronic circuits 

Why?

Why?

Formally:



Poles and Zeros of Linear Networks

( )

m
i

i
i=0
n

i
i

i=0

a s
T s

b s
=
∑

∑

For any linear system, T(s) can be expressed as

where ai

 

and bi

 

are all real,             ,               ,  and n    m≥

Numerator often termed N(s)
Denominator often termed D(s)

Definition:  The roots of D(s) are the poles of T(s) and the roots of 
N(s) are the zeros of T(s)

The poles of T(s) are often termed the poles of the system

( ) ( )
( )

m
i

i
i=0
n

i
i

i=0

a s N s
T s

D sb s
= =
∑

∑

Can always make bn

 

=1

nb   0≠ ma   0≠

Linear
SystemXIN XOUT



Poles and Zeros of Linear Networks
Example:   Determine the poles and zeros of the following circuit where the input 
and output variables are indicated

( )
1 RCT s  = 1s+ RC

Pole at 1s = -
RC

No zeros

( )OUT INV G + sC  = V G  ( ) GT s  = 
sC + G

Draw s-domain circuit using conductance notation



Poles and Zeros of Linear Networks
Example:   Determine the poles and zeros of the following circuit where the input 
and output variables are indicated

By KCL
( )1 1 2 1 IN 1 OUT 2V G +G +sC  = V G  + V G

Draw s-domain circuit using “conductance”

 

notation

( )OUT 2 2 1 2V G +sC  = V G

( )
1 2

1 2

2 1 2 2 1 2

1 2 1 2

G G
C CT s  = 

G +G G G Gs +s + +
C C C C

⎡ ⎤
⎢ ⎥
⎣ ⎦

Solving, obtain:



Poles and Zeros of Linear Networks
Example:   Determine the poles and zeros of the following circuit where the input 
and output variables are indicated

( )
1 2

1 2

2 1 2 2 1 2

1 2 1 2

G G
C CT s  = 

G +G G G Gs +s + +
C C C C

⎡ ⎤
⎢ ⎥
⎣ ⎦

No zeros

Two poles obtained by solving quadratic equation
2

41 2 2 1 2 2 1 2
1

1 2 1 2 1 2

G +G G G +G G G G1 1p  = - + + +  
2 C C 2 C C C C

⎛ ⎞⎡ ⎤ ⎡ ⎤
−⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠

2

41 2 2 1 2 2 1 2
2

1 2 1 2 1 2

G +G G G +G G G G1 1p  = - +  - +  
2 C C 2 C C C C

⎛ ⎞⎡ ⎤ ⎡ ⎤
−⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠

1
1

1G  = 
R 2

2

1G  = 
R

where



Poles and Zeros of Linear Networks
Example:   Determine the poles and zeros of the following system

( ) 2

s+4T s  = 
s +9s+8

( ) ( )( )
s+4T s  = 

s+1 s+8

write in factored form as

zeros: {s = -4}

poles: {s = -1, s = -8}



End of Lecture 5
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