Standard Approach to small-signal analysis of nonlinear networks

1. Linearize nonlinear devices

2. Replace all devices with small-signal equivalent

3. Solve linear small-signal network
Review from Last Time:

Standard Approach to analysis of nonlinear networks

1. **Nonlinear Network**
2. **dc Equivalent Network**
3. **Q-point**
4. **Values for small-signal parameters**
5. **Small-signal equivalent network**
6. **Small-signal output**
7. **Total output** (good approximation)
Standard Approach to small-signal analysis of nonlinear networks

Nonlinear Network

dc Equivalent Network

Q-point

Values for small-signal parameters

Small-signal equivalent network

Small-signal output

Total output

(good approximation)
Engineering Issues for Using Data Converters

1. Inherent with Data Conversion Process
 - Amplitude Quantization
 - Time Quantization
 (Present even with Ideal Data Converters)

2. Nonideal Components
 - Uneven steps
 - Offsets
 - Gain errors
 - Response Time
 - Noise
 (Present to some degree in all physical Data Converters)

How do these issues ultimately impact performance?
Types of ADCs

- Flash
- Pipelined
- Folded
- Serial
 - Single-slope
 - Dual-slope
- Interpolating
- Iterative (Algorithmic, Cyclic)
- Successive Approximation (SAR)
- Oversampled (Delta-Sigma)
- Charge Redistribution
- Several others
Types of ADCs

Flash ADC
Types of ADCs

Pipelined ADC

Diagram showing the pipeline stages and shift register array.
Types of ADCs

Cyclic ADC

\[X_{IN} \rightarrow S/H \rightarrow \text{Gain/Shift Stage} \rightarrow \text{Shift Register} \rightarrow X_{OUT} \]

Gain/Shift Stage

\[X_{IN_k} \rightarrow \text{ADC}_k \rightarrow + \rightarrow A_k \rightarrow \text{S/H}_k \rightarrow X_{OUT_k} \]
Types of ADCs

Single-Slope ADC

Diagram showing the components and signals of a Single-Slope ADC.
Types of ADCs

Dual-Slope ADC

- X_{IN}
- $-X_{REF}$
- CLK

Output: X_{OUT}
Types of ADCs

SAR ADC

- X_{IN}
- X_{REF}
- X_{OUT}

Successive Approximation ADC (SAR)
Types of DACs

- Current steering
- R-String
- Ladder (R-2R)
- Parallel
- Pipelined
- Subranging
- Charge Redistribution
- Algorithmic
- Serial
- Subranging
- Oversampled (Delta-Sigma)
- Several others
Types of DACs

\[V_{\text{RFF}} \] \quad X_{\text{IN}} \quad V_{\text{OUT}}

\textit{R-string DAC}
Types of DACs

Current-steering DAC
Types of DACs

Ladder DAC (R-2R)
Types of DACs

Charge-Redistribution DAC

\[C_k = \frac{C}{2^{k-1}} \]
Engineering Issues for Using Data Converters

1. Inherent with Data Conversion Process
 - Amplitude Quantization
 - Time Quantization
 - Present even with Ideal Data Converters

2. Nonideal Components
 - Uneven steps
 - Offsets
 - Response Time
 - Noise
 - Present to some degree in all physical Data Converters

How do these issues ultimately impact performance?