/ EE 324 \

Signals and Systems 11
Spring 2007

Lecture #1
Review of Signals

Slides thanks to J.White, A. Willsky, T. Weiss, Q. Hu, and D. Boning

“Lecture notes reproduced and adapted with permission of Jacob White.
Figures and images used in these lecture notes by permission,
copyright 1997 by Alan V. Oppenheim and Alan S. Willsky”

/ Signals and Systems \

EE324 is about using mathematical techniques to help analyze
and synthesis systems which process signals.

e Signals are variables that carry information
e Systems process input signals to produce output signals.

Today: Signals, Next Time: Systems.
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/ Different Types of Signals \

EKG —=
Microphone — — Oscilloscope
CD ——» i
Switch Speaker
Oscillator ——» box
Audio
Pulse generator ——- Amplifier

AM/FM generator —
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/ Signal Classification \

Type of Independent Variable

Time is often the independent variable. Example: the electri-
cal activity of the heart recorded with chest electrodes — the
electrocardiogram (ECG or EKG).
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The term time is often used generically, to represent the inde-
pendent variable of a signal. the independent variable may be a
spatial variable such as in an image. Here grayscale information
is specified as a function of position.

Cervical MRI

Independent Variable Dimensionality

An independent variable can be 1-D (t in the EKG) or 2-D (x.y
in the image).
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EE324 examples are mostly 1-D, but many applications use mul-
tiple dimensions (radar, MRIs, numerical simulation).

Continuous Time (CT) and Discrete-
Time (DT) Signals
CT signals take on real or complex values as a function of an
independent variable that ranges over the real numbers and are
denoted as z(t). DT signals take on real or complex values
as a function of an independent variable that ranges over the

integers and are denoted as z[n]. Note the use of parentheses
for CT signals and square brackets for DT signals.

An image example on the left, its DT representation on the right

The image on the left consists of 302 x 435 picture elements
(pixels) each of which is represented by a triplet of numbers
{R,G,B} that encode the color. Thus, the signal is represented
by c[n,m] where m and n are the independent variables that

specify pixel location and ¢ is a color vector specified by a triplet
of hues {R,G,B} (red, green, and blue).
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Mandril Example
Blurred Image

Mandril Example \
Unblurred Image — 0.1% Noise

Mandril Example
Unblurred Image — No Noise
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/ Real and Complex Signals \

An important class of -sig nals are:
e CT signals of the form z(t) = &**
e DT signals of the form z[n] = 2"

where : and s are complex numbers. For both exponential CT
and DT signals, = is a complex quantity and has:

+ a real and imaginary part, or
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¢ a magnitude and an angle.

\Nhat is most convienient depends on the analysis. /
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ﬁexample, suppose s = jx/8 and = = ¢/7/8, then the real m
are

R{z(t)} = R{™/8} = cos(nt/8),
R{z[n]} = R{™/B} = cos[an/8].
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K Periodic and A-periodic Signals \

Periodic signals are such that x(t+47T) = z(t) for all {. The small-
est value of T that satisfies the definition is called the period.
Below on the left below is an aperiodic signal, with a periodic
signal shown on the right.
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/ Right- and Left-Sided Signals \

A right-sided signal is zero for t < T and a left-sided signal is
zero for £ > T where T can be positive or negative,
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/ Bounded and Unbounded Signals\

At) iy

Unbounded Unbounded

Botnded Bounded
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. Time-shift 120

y(t) = a(t—T) \

Time Transformations

y(1)
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« Time reversal 120

T T
T1 T T+ T+2

y(t)

y(t) = z(-1) T o 1

-
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General transformation y(t) = z(at + b)

1. Replace ¢ with T on the plot of =(t)

2. Given r =at+bsolve for t=2 -1

3. Draw the transformed t-axis directly below
the r-axis

Qat y(t) on the t-axis

Time Transformations

~

Ex. y(t) =z(—5+1)

, tx(T)
AN
1o 1 2 -

r=—f+1=t=2-27

. y(t)

T
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Even and Odd Signals

Even signals z.(¢) and odd signals z,(t) are defined as

ze(t) = ze(—t) and ao(t) = —zo(—1).

ze(t) zo(t)
A\ . R .
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ﬂw signal is a sum of unique odd and even signals. USing\

yeilds

N

z2(t) = ze(t) + zo(t) and z(—t) = ze(t) — zo(t),

2elt) = (a(0) +2(~1)) and 2o(t) = 2(a(t) - 2(~1)).
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Building Block Signals

Eternal Complex Exponentials

e z(t) = Ne®t for all t
e z[n] = Xz" for all n,

where X, s, and = are complex numbers. We illustrate the rich-
ness of this class of functions for CT signals; DT signals are
similarly rich. In general s is complex and can be written as

s =0+ jw,

where ¢ and w are the real and imaginary parts of s.
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Eternal, complex exponentials — real s
If s = o is real and X is real then

a(t) = XeF,

and we get the family of real exponential functions.
Eternal, complex exponentials — imaginary s
If s = jw is imaginary and X is real then

w(l) = Xel*t = X(coswt + jsinwt),

and we get the family of sinusoidal functions.
Eternal, complex exponentials — complex s
If s = o+ jw is complex and X is real then

z(t) = Xelotiwt — XePY(coswt + jsin wit),

and we get the family of damped sinuscidal functions.
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For z(t) = Xe*, R{z(t)} = Xe7'coswt is plotted for different

1

\

values of s superimposed on the complex s-plane.

Jw Complex s-plane
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For z(t) = Xe*, S{z(t)} = Xelsinwt is plotted for different
values of s superimposed on the complex s-plane.
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Why are eternal complex
exponentials so important

e Almost any sighal can be represented as a sums of eternal
complex exponentials.

e The output of linear time-invariant (LTI) systems is simple
to compute if the inputs are sums of eternal complex expo-
nentials.

e Eternal complex exponentials are the characteristic (unforced,
homogeneous) responses of LTI systems (eigenfunctions).
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Cervical Spine MRI
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Unit Impulse Function

The unit impulse 4(t), aka the Dirac delta function, is not a func-
tion in the ordinary sense. It is defined by the integral relation

[ swswar= s),

and is called a generalized function. The unit impulse is not
defined in terms of its values, but is defined by how it acts inside
an integral when multiplied by a smooth function f(t). To see
that the area of the unit impulse is 1, choose f(t) = 1 in the
definition. We represent the unit impulse schematically as shown
below; the number next to the impulse is its area.

Unit impulse
6(t)
1

v L
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Narrow Pulse Approximation

To obtain an intuitive feeling for the unit impulse, it is often
helpful to imagine a set of rectangular pulses where each pulse
has width ¢ and height 1/¢ so that its area is 1.

MU)

The unit impulse is the quintessential tall and narrow pulse!
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Intuiting Impulse Definition

f(0)
e || fBpe(t)

-£(0)

€ i

As the rectangular pulse gets taller and narrower,

fl_ir%f}:ﬂ F(pe(t) dt — @ . = £(0).
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Uses of the Unit Impulse

The unit impulse is a valuable idealization and is used widely in
science and engineering. Impulses in time are useful idealizations.

e Impulse of current in time delivers a unit charge instanta-
neously to a network,

s Impulse of force in time delivers an instantaneous momentum
to a mechanical system.
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Impulses in space are also useful.

» Impulse of mass density in space represents a point mass.

» Impulse of charge density in space represents a point charge.

« Impulse of light intensity in space represents a point of light.

We can imagine impulses in space and time.

& Impulse of light intensity in space and time represents a brief
flash of light at a point in space.
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Unit Step Function

Integration of the unit impulse yields the unit step function
t
mg:f 8(r)dr,
oo

which is defined as

_foift<o
'“”"{ 1 ift>o0.

Unit impulse Unit step
a(t) u(t)
‘1 T
0 i 0 t
32



K Successive Integrations of the Unit \

Impulse Function

Successive integration of the unit impulse vields a family of func-
tions.

Integration on t

Unit impulse  Unit step Unit ramp Unit parabola

() ult) fult) n.(!) e :.)'
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K Building Block Signals can be used to\
create a rich variety of Signals
z(t) = e " cos(wtu(t)  z(t) = eT7 cos(wt)u(—t)

u(t) —u(t—1) tu(t)—z(t—l)u(t—l)—f(t—z)u(t—z)

/ Conclusions \

e We are awash in a sea of signals.

e Signal categories — identity of independent variable, dimen-
sionality, CT or DT, real or complex, periodic or aperiodic,
causality, bounded, even & odd, etc.

e Building block signals — eternal complex exponentials and
singularity functions — are a rich class of signals and we will
show that they can be summed to represent virtually any
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Q}nal of physical interest, /
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