Problem 1 Determine I_{OUT}.

$$W_1 = 5U, L_1 = 1U, W_2 = 20U, L_2 = 4U$$

$$I_{OUT} = ?$$

Problem 2 Assume you have available a 5mA sourcing current (one end connected to V_{DD}).

a) Design a current mirror that provides two outputs, a sinking current of 100uA and a sourcing current of 20mA using MOS transistors. You have one power supply in your design.

b) What is the maximum voltage for the 20mA current source for your design if it is to work as a current mirror.

Problem 3 Design a noninverting amplifier with a nominal gain of 20 that has an input impedance that is between 100K and 200K that can drive a 4K resistive load using MOS transistors, resistors, capacitors, and one dc voltage source. Verify your design analytically and with SPICE.

Problem 4 A potential layout strategy for a basic current mirror is shown below where the mirror gain is determined by the W/L ratio of the layout on the right to the W/L ratio of the layout on the left. If an n-channel current mirror is designed using this layout approach with an ideal mirror gain of

$$M = \frac{W_2}{L_2} \frac{L_1}{W_1}$$

and with nominal values of $L_1 = L_2 = 4\mu\text{ and } W_1 = 4\mu, W_2 = 12\mu$, determine the actual mirror gain if the field oxide encroachment into the active region results in an inward movement of the edges of 0.1u.
Problem 5 Assume the MOS transistors are all operating in the saturation region and the MOS transistors are all operating in the Forward Active region.

a) Determine the output voltages V_{O1} and V_{O2} in terms of the MOS device dimensions, W and L, the emitter areas, and the resistor variables R_1, R_2, and R_3.

b) If $R_1=60K$, $A_{E1}=A_{E2}=100\mu^2$, $A_{E3}=25\mu^2$, $A_{E4}=300\mu^2$, $W_5=10\mu$, $L_5=1\mu$, $W_6=16\mu$, $L_6=4\mu$, Determine R_2 and R_3 so that $V_{O1}=3V$ and $V_{O2}=6V$.

Problem 6 Assume the following circuits are all sized and biased so that all transistors are in the saturation region. Determine the small signal voltage gain in terms of the small signal device parameters and make a quantitative comparison of the relative gains of the three circuits.

Problem 7 Consider the following amplifier structure where all devices are operating in the saturation region.

a) Determine the small signal voltage gain in terms of the small-signal model parameters of the transistors.

b) Assume $V_{DD}=5V$, $I_1=500\mu A$, and the quiescent current in transistors M_1,M_4, and M_5 is 500uA. Numerically determine the small signal voltage gain if the quiescent voltage on the gate of M_4 and M_5 is 2.5V and the quiescent output voltage is 4V. Be sure to use the model parameters given at the top of page 1 when solving this problem.
Problem 8 Determine the small signal voltage gain in terms of the small signal model parameters of the devices. Assume the MOS transistors are operating in the saturation region and the bipolar transistor is operating in the forward active region.

Problem 9 If the component values for the circuit in the previous problem are as shown below, numerically determine the small-signal voltage gain.
Problem 10 Determine the small signal voltage gain in terms of the small signal model parameters of the devices. Assume the MOS transistors are operating in the saturation region and the bipolar transistor is operating in the forward active region.

![Circuit Diagram]

Problem 11 Design a noninverting amplifier using Bipolar transistors with a nominal voltage gain of 60 that has an input impedance larger than 200K and that can drive a 1K load resistor. Verify your design analytically and with SPICE.

Problem 12 Assume the width of M₂ is selected so that the quiescent collector voltage of Q₁ is -2V and assume the capacitors C₁ and C₂ are large.

a) Determine the small signal voltage gain in terms of the small-signal model parameters and the resistor values in the circuit.

b) Determine the voltage V_{OUT} if $V_{in}=0.01\sin1000t$.
Problem 13 Assume the BJTs are operating in the forward active region and the MOS device is in saturation. Assume all capacitors are very large.

a) Draw the small signal equivalent circuit.

b) Determine an expression for the small-signal voltage gain in terms of the small-signal model parameters of the transistors and the passive components.
Problem 14 Assume you have available a 4mA sourcing current (one end connected to V_{DD}) and a single dc voltage source, V_{DD}.

a) Design a current mirror that provides a sinking current of 200uA using MOS transistors.
b) What is the minimum voltage of the 200uA current source in your design for it to still work as a current mirror.

Problem 15 Determine V_{OUT}.

Problem 16 Determine V_{OUT}.

Problem 17 Design a current generator circuit that has output sinking currents of 10uA and 50uA. You have available MOS transistors, one resistor of value 200K, and a 5V dc voltage source.
Problem 18 Assume the BJTs are operating in the forward active region and the MOS device is in saturation. Assume all capacitors are very large.

a) Draw the small signal equivalent circuit.

b) Determine an expression for the small-signal voltage gain in terms of the small-signal model parameters of the transistors and the passive components.

c) Express the small signal voltage gain in terms of the quiescent values of I_{C1}, I_{D1}, I_{C2}, and the device model parameters (i.e. no small-signal parameters).

Problem 19

a) If the current I_{BIAS} is selected so that the quiescent output voltage is 4V, determine the small signal voltage gain of this circuit.

b) What is the approximate value of I_{BIAS} needed to establish $V_{OUTQ}=4V$?

Problem 20 US Patent 5,952,884 describes a new current mirror. It is pictured on the first page of the patent.

a) What benefits do the inventors claim this current mirror has

b) Provide an analytical development that verifies the claims the inventors make.
Problem 21 Identify one US patent that has been issued since 2002 that introduces a new current mirror. Give the current mirror schematic that is in the patent you identify and list the benefits the inventors claim this current mirror has.

Problem 22 Consider the following circuit where M₁ and M₂ are matched with W=10μ and L=2μ.

a) Determine I_B so that the quiescent output voltage is 4V.

b) If the bias current obtained in Part a) were to change by .001%, how much change would occur in the quiescent output voltage?

c) Obtain an expression for the small-signal voltage gain in terms of the small-signal model parameters.

d) Determine a numerical value for the small-signal voltage gain.

Problem 23 Numerically determine the small-signal voltage gain for the circuit in (observe this is the same circuit structure considered in Problem 10)

Problem 24-26 Assume the BJTs are operating in the forward active region and the MOS device is in saturation. Assume all capacitors are very large.

c) Draw the small signal equivalent circuit.

d) Determine an expression for the small-signal voltage gain in terms of the small-signal model parameters of the transistors and the passive components.
Problem 27-30 Assume the BJTs are operating in the forward active region and the MOS device is in saturation. Assume all capacitors are very large.

a) Draw the small signal equivalent circuit.

b) Determine an expression for the small-signal voltage gain in terms of the small-signal model parameters of the transistors and the passive components. The last circuit has two outputs so there are two voltage gains for this circuit.