Problem 1

Assume BJT works in forward active region

\[I_B = \left(\frac{10 - 0.6}{500k}\right) = 18.8\mu A \]

\[I_C = \beta I_B = 100 \times 18.8\mu A = 1.88mA \]

\[V_C = 10 - 4000 \times 0.00188 = 2.48V \]

\(V_{out} = 0V \) (there is a capacitor creating an open circuit in DC.)

Small signal equivalent circuit:

Problem 2

For the MOSFET to be in saturation \(V_{DS} \geq V_{GS} - V_T \)

\[V_{out} + 2 \geq 2 - 0.5 \rightarrow V_{out} \geq -0.5 \]

\[I_D = \frac{\mu n C_{OX} W}{2L} (V_{GS} - V_T)^2 = \frac{4 - V_{out}}{R_1} \rightarrow V_{out} = 4 - 3.375 \times 10^{-3} \times R_1 \geq -0.5V \]

\(\rightarrow R_1 \leq 13.3k\Omega \)

Problem 3

\[R_1 = 6.666k\Omega \]

\[A_V = \frac{2I_{DQ} R}{V_{SS} - V_T} = -\frac{1.5V}{V} \]
Problem 4

Assuming that M_1 and M_2 are in saturation

$$I_{D_1} = I_{D_2} = \mu_n C_{OX} W_n (V_{GS} - V_T)^2 = \frac{\mu_n C_{OX} W_n}{2L_n} (V_{GS} - V_T)^2$$

$$I_D = 1 mA \rightarrow V_{out} = 0.96447 V$$

Problem 5

a) For quiescent values that capacitors act as open circuits, so the voltage is simply,

$$V_{CQ} = 32 - \left(\frac{3.2 - 0.6}{1.5k} \right) 1.7k = 26.8 V$$

$$V_{out} = 0 V$$

b)
Problem 6

\[V_{out} = 12 - (12000 \times i_{DQ}) \]

\[I_{DQ} = 100 \times 10^{-6} \times \left(\frac{6}{2 \times 4} \right) \times (0 - (-2) - 1)^2 \]

\[I_{DQ} = 75 \mu A \]

\[V_{out} = 11.1V \]

Problem 7

a)

\[I_{DQ} = 100 \times 10^{-6} \times \left(\frac{6}{2 \times 3} \right) (2 - 1)^2 \]

\[I_{DQ} = 10 \mu A \]

\[V_{outq} = 4 + 10 \mu \times 20k = 5V \]

b)

When \(V_{in} = 0V, V_{out1} = V_{outQ} = 5V \)

When \(V_{in} = 25mV, V_{out2} = V_{outQ} + \Delta V \)

\[g_m = 100 \times 10^{-6} \left(\frac{6}{3} \right) (1) = \frac{20 \mu A}{V} \]

\[\Delta V = (g_m \times \Delta V_{in}) \times 20k = 0.1V \]

\[V_{out2} = 5.1V \]

Problem 8

\[R_{FET} = \frac{1}{\mu_n C_{OX} \left(\frac{L}{W} \right)} \]

\[\frac{V_{out} - V_{in}}{R_F} = \frac{V_{in}}{R_{FET}} \]

\[V_{out} = 1 + \frac{R_F}{R_{FET}} \]

\[\frac{V_{out}}{V_{in}} = \frac{1 + \mu_n C_{OX} \left(\frac{W}{L} \right) \times R_F}{V_{in}} \]
Problem 9

a) \[\frac{I_{E1}}{I_{E2}} = \frac{A_{E1}}{A_{E2}} = \frac{1}{4} \]

\[I_B = I_{B1} + I_{B2} = \frac{5}{4} I_{B1} \]

\[I_{B1} = I_{C1} + \beta I_{C1} = \beta I_{B1} + \frac{5}{4} I_{B1} \]

\[I_{B1} = I_{in} \left(\frac{1}{\beta + \frac{5}{4}} \right) \rightarrow I_{out} = \beta I_{B2} = \beta \times 4I_{B1} = I_{in} \left(\frac{4}{1 + \frac{5}{4}} \right) \]

Assuming that \(\beta \) is large \(\rightarrow I_{out} = \frac{5}{4} I_{in} = \frac{5}{4} mA \)

b) \[\frac{I_{D1}}{I_{D2}} = \frac{W_2}{L_2} \frac{W_1}{L_1} = \frac{10}{50} = \frac{1}{5} \]

\[I_{out} = 5I_{in} = 0.2mA \]

Problem 10

BJT: \(I_{out} = \frac{A_{E2}}{A_{E1}} I_{in} \)

MOSFET: \(I_{out} = \frac{W_1}{L_1} \frac{W_2}{L_2} I_{in} \)

Problem 11

At the basics, \(I_d = \mu C_{ox} \left(\frac{w}{2L} \right) (V_{gs} - V_T)^2 \), and all three have the same total length and width. As that the length/width is the one degree of freedom we have to modify the MOSFET they should behave the same.

Problem 12

As this circuit is a 1-port small signal model it acts as a resistor.

\[R_{ss} = \frac{V_{DQ}}{I_{DQ}} \]

\[V_{DQ} = 2V \rightarrow I_{DQ} = 30.6mA \]

\[R_{ss} = \frac{2}{0.0306} = 65.4 \Omega \]
Problem 13

Yes, this does behave as a rectifier, but it does not work particularly well. It is “Diode Connected” and behaves as a diode, but it’s I-V curve is not as good as the standard diodes used in class, but may be better than some LEDs.

14

As always, we will assume we are operating in saturation region,

\[I_D = \mu_n C_{ox} \left(\frac{W}{2L} \right) (V_{gs} - V_T)^2 = \frac{V_{dd} - V_{out1}}{R_1} \]

\[I_D = \frac{(4 - 3)}{10k} = 0.1mA \]

\[100 \times 10^{-6} \times \left(\frac{W}{2L} \right) (2 - 1)^2 = 0.0001 \]

\[\frac{W}{2L} = 1 \rightarrow W = 2L \]

\[W = 0.6\mu, L = 0.3\mu \]

15

Using Behavioral Verilog,

```
`timescale 1ns/1ps
module Counter4bit (S, CLK, Count);

input S, CLK;
output [3:0] Count;
reg [3:0] Count;

initial
Count = 4'b0000;

always@(posedge CLK) begin
  if(S)
    assign Count = Count-1;
  else
    assign Count = Count+1;
end

endmodule
```
module CounterTB ();
 reg S, CLK;
 wire [3:0] Count;

Counter4bit count1(.S(S), .CLK(CLK), .Count(Count));

initial
begin
 S = 1'b0;
 CLK = 1'b0;
end

always
 #1 CLK = ~CLK;
always
 #40 S = ~S;

endmodule