
Updated By: Robert Buckley Page 1 of 23 Updated: 12/21/2017

EE 330 Spring 2018
Lab 1: Cadence® Custom IC design tools –
Setup, Schematic capture and simulation

Table of Contents
Objective.. 2

1. Setup .. 2

Set Bash Shell for the account .. 2

2. Starting Cadence Custom IC tool and creating libraries .. 3

Creating a new library ... 5

Creating a new cell and a cell view ... 7

3. Schematic Capture... 9

Instantiating the components ... 9

Connecting the components ... 11

Adding labels ... 11

Editing object properties ... 12

Adding comments ... 13

4. Simulating a circuit .. 14

Setting up the simulations .. 14

Setting up the outputs .. 15

Running the simulation and viewing the results ... 15

5: Inverter Simulation with Verilog HDL inside ModelSim .. 16

Updated By: Robert Buckley Page 2 of 23 Updated: 12/21/2017

Objective
The objective of this lab is to familiarize you with the basics of the Cadence® Custom IC

design tool, Virtuoso®. You will first set up your account to run the IC tool, learn how to manage

your files with the Library Manager, understand the basics of the Schematics Editor, and

simulate a simple circuit using the Analog Design Environment (ADE).

Note: If you have never used Linux, or other Unix-based operating system before, first

familiarize yourself with some of the basic Unix commands provided in the appendix. You

can also search online for basic linux commands.

1. Setup

Once you have successfully logged into your account on a Linux machine, you need to

take a few steps before you can start using the IC design tools. There is a Bash script that will

setup the tools for you on the class website. If you want to know what the script does the

process is outlined on the Cadence 6.1 Setup page on the ISU VLSI wiki located at

http://wikis.ece.iastate.edu/vlsi/index.php/Cadence_6.1_Setup.

Set Bash Shell for the account
Bash shell is normally the default shell, so this step is normally unnecessary. So first you

should check what shell your terminal is using. To do this open the terminal and use the
command
 echo $0

The ‘echo’ command will print whatever you type after it to the terminal. If you type ‘echo
hello world’ it will type “hello world” as the output in the terminal. By adding a ‘$’ in front
of something it becomes a variable, which can be set in scripts or on the terminal with other
commands. The variable ‘$0’ is the shell you are currently using. If the output is not

bash

You will need to follow these steps,

Login to http://www.asw.iastate.edu
Click on: Manage user “Net-ID”
Click on: Set your login shell (Unix/Linux)
Select: “/bin/bash”
Click on: Update Shell
Click on: logout

http://wikis.ece.iastate.edu/vlsi/index.php/Cadence_6.1_Setup
http://www.asw.iastate.edu/

Updated By: Robert Buckley Page 3 of 23 Updated: 12/21/2017

You need to download and run the script SetupEE330Lab.sh which can be found on the class

website http://class.ece.iastate.edu/ee330/. It is under Lab Handouts under Lab 1: called Lab

Setup Script. Download it and open the Terminal. By default the program cannot be executed, to

make it executable run,

chmod 700 ~/Downloads/SetupEE330Lab.sh

The chmod (change file mode bits) command determines permissions for a file. The first number

determines what the owner (you) can do, the second number determines the members of the

files group can do, and the third number determines what others users can do. 7 is read (4) +

write (2) + execute (1) allowing you to do anything with the file. With it now readable and

executable run the command,

~/Downloads/SetupEE330Lab.sh

When you type the name of a program into the terminal it will run the program. The ‘~’ is your

home folder, so ‘~/Desktop’ is your desktop, and ‘~/Downloads’ is your downloads folder.

2. Starting Cadence Custom IC tool and creating libraries
The script will open Cadence automatically; these steps will not be needed until you

need to open Cadence IC Design again. If your shell is not bash, type the command “bash” in the

terminal. (You may skip this step in later labs if you changed your default shell to bash)

 bash

The ‘bash’ command sets the shell to bash until you close the terminal. Once you are sure that

you are in the bash shell you will need to change directory (what Unix calls folders) into the

ee330 directory created by the script.

 cd ee330

The ‘cd’ command stands for “change directory” and the directory we want to change into is

called ‘ee330’ (this was created in the script we ran earlier). Then type this command to open up

Cadence, the program we will be using most of the semester.

 virtuoso &

Make sure you run the command from the ee330 directory every time.

 cd ee330

 virtuoso &

http://class.ece.iastate.edu/ee330/

Updated By: Robert Buckley Page 4 of 23 Updated: 12/21/2017

Note: As discussed above, when you type a program name into the terminal it starts the

program. ‘virtuoso’ is aliased to the full path name to the program. The ‘&’ after the command

means that the program is opened in the background, so you can still use the terminal you

opened it in for other commands. If you want to see the full path name used when you use the

command use,

 which virtuoso

The ‘which’ command looks through the filesystem to inform you what version of a program you

are using and where it is.

This will start the Cadence custom IC design tool and, after a brief delay, you will see the

Command Interpreter Window (CIW), as shown in below. All errors and warnings are

communicated to the user through the CIW so make sure you always use it as your guide when

troubleshooting.

Figure 1: Command Interpreter Window (CIW)

Updated By: Robert Buckley Page 5 of 23 Updated: 12/21/2017

At the startup, you will also see a Library Manager Window (LMW), as shown in Fig. 2. The

library manager is used to organize the data into libraries and cells. If you don't see the Library

Manager Window, you probably forgot to run the virtuoso program from the ee330 folder. You

can also open the window in the CIW, just click on Tools→Library Manager

Figure2: Library Manger Window

Creating a new library
We will group our designs in Libraries. Each library is a folder to group relevant sub-

folders together. Each Library can contain multiple “Cells” and each cell can have multiple

“Views”. Let us first create a new library called “lablib” (you can use a different name if you

prefer) and create cells for each lab in the library. To create a new library, go to the Library

Manager and click on File→New→Library. In the form that pops up, shown in Fig.3, type in

the name of the library <lablib> in the Name field and click on OK.

<lablib> can be anything. It may be easiest to use the same library for most labs this

semester.

Updated By: Robert Buckley Page 6 of 23 Updated: 12/21/2017

Figure 3 : Form to create a new library

A Technology File window will pop up. For the library you just created, select “Do not need

process information” as shown in Fig. 4 and then click OK.

Updated By: Robert Buckley Page 7 of 23 Updated: 12/21/2017

Fig. 4 Technology File Pop Up

 A new library by the name you chose, “lablib”, will appear in the LMW.

Technology files control information about the fabrication process, which will be in following

labs. Normally, when creating a new library you will want to “Attach to an existing technology

library”. We will not do this now so we can learn how to use the Technology Tool Box later.

Creating a new cell and a cell view
A cell in Cadence can represent any level of the hierarchy of a design. At the bottom

level of the hierarchy, a cell may contain a single transistor or other basic circuit elements. At

the top level of the hierarchy, a cell may contain interconnected cells to describe a complete

system. In turn, each cell has at least one cell view. One way of looking at a cell is to think of it as

a die. The same die shows a different number depending on how you view the dice. For our

purposes, a cell called “inverter” could have a view called behavioral (describing the behavior of

an inverter in a programming language), a schematic (describing the behavior of an inverter

using transistors), a symbol (a view allowing the inverter to be re-used in other designs), etc.

To create a new cell and one of its cell views simultaneously, first select (highlight) the

library in which you want the new cell to reside in the LMW. Next, click on File→New→Cell

View… in the LMW, then type the name of the new cell in the Cell field and choose the desired

view.

Following this procedure, create a new cell called lab1 with schematic view in the

lablib library. Then click OK. The software will automatically launch the appropriate editor for

the chosen view. This is illustrated in Fig.4.

Updated By: Robert Buckley Page 8 of 23 Updated: 12/21/2017

Fig. 4 Pop-up window for creating cell views

The first step in a new design is typically something you scribble on a notepad. Once you

have a good idea of what is that you are trying to design and how that circuit should work, the

next step is to verify your idea using a simulator. The next section describes the basics of the

schematic capture tool in Virtuoso used in to prepare a circuit for simulation.

Updated By: Robert Buckley Page 9 of 23 Updated: 12/21/2017

3. Schematic Capture
To practice schematic capture, we will enter the circuit shown in the Pre-lab section.

You should already have the schematic editor window open editing the schematic view of the

cell lab1. The first step is to instantiate all the required components.

Instantiating the components
To place all the components in the schematic window, click on menu item

Create→Instance. You will see two windows popping up on the screen (shown below):

“Component browser” and “Add Instance”.

In the “Component Browser”, change the library to “analogLib” and click on “Flatten” to

see all the cells without categorization. Now find the resistor cell and click on it (The resistor cell

is called res). Notice how the “Add Instance” form changes to reflect the selection of resistor

with a default value of 1K. Change the value of the resistor to 10K. Do not click in the Schematic

window yet! Just move your cursor over an empty space in the schematic window. You will see a

yellow colored resistor “floating” with the cursor. If you click anywhere in the window, a copy of

the resistor will be placed. Try it. If you need a component at a different orientation, click on

“Rotate”, “Sideways”, or “Upside Down” in the “Add Instance” form.

You can use icons from the icon bar on the schematic window for common editing tasks.

Hover the mouse pointer over an icon to determine what it is. As practice, locate the “instance” icon.

Updated By: Robert Buckley Page 10 of 23 Updated: 12/21/2017

All the resistors that are placed in the schematic window will have resistance of 10K.

What if you needed a different valued resistor? Just click on the “Add Instance” form, change

the value, and then click in the window to get a component with the adjusted value.

Once you have enough resistors, instantiate a capacitor (cap), ground (gnd), and a

voltage source (vsource) from analogLib. Press “Esc” key to end the instantiation mode.

You can use keyboard shortcuts for common tasks. These can greatly improve speed and

efficiency. For example, in the schematic editor “I” brings up “Add Instance”. Keyboard shortcuts are

listed next to their menu entries.

The schematic editor window, showing the components that were added to the cell lab1 are

shown in Fig. 5.

Fig. 5 Schematic Editor Window showing placement of parts for cell lab1

Updated By: Robert Buckley Page 11 of 23 Updated: 12/21/2017

Connecting the components
There are two ways to interconnect components. First, use the menu entry

Create→Wire (narrow) to get into the wiring mode (You could also have pressed the shortcut

“w” key or clicked on the Add-Wire (narrow) icon). When in wiring mode, click on the red

terminal of a component to start one end of the wire (you do not need to keep the button

down). Now click on the other component’s terminal where you want the connection to

terminate. If you make a mistake and want to quit the wiring mode, press the “Escape” key on

the keyboard. You can undo the last action by pressing “u”.

The second way to add wiring is to first bring the mouse pointer over the red terminal of

a component’s terminal. While clicking and holding the mouse button, drag you mouse and you

will see a wire started. You can let go of the button now and the wiring will continue. Hit

“Escape” anytime to cancel. Unlike the first method, the wiring mode automatically terminates

with the completion of one connection.

Complete wiring the circuit. To make sure there are no floating components or

connection problems, we need to “Check and Save” the design. Click on the icon or the “Check

and Save” entry from the “File” menu. Check the CIW window to make sure the design was

saved without errors.

Adding labels
As you wire the components together, every net is automatically assigned a name such

as net1, net2, etc. These names are fine for the software but are not easy for us to remember.

Adding labels to wires helps us to interact with the tools more efficiently. To add a label to a

wire, click on the menu item Create→Wire Name (or use shortcut “l”). In the form, type vIn

vMid vOut. Bring your mouse pointer into the schematic window. If you do not see the

“floating” vIn attached to your cursor, you first need to click on the title bar of the schematic

window to make it active. Now you should see the vIn attached to the mouse pointer. Click your

mouse pointer on the net you wish to call vIn. Note how the next label from the list you typed in

the form appears once you have placed the first label. This is a convenient way of adding

multiple labels without having to go back and forth between the form and the schematic

window.

Labels provide functionality in addition to being visual aids: connectivity. If two

unconnected nets have the same name, they are considered to be electrically connected. This

feature can allow you to create schematics with less clutter but can also be a source of mistakes.

Use the capability of labels to create connectivity judiciously or your schematics may actually

become less readable.

Updated By: Robert Buckley Page 12 of 23 Updated: 12/21/2017

Fig. 6 Schematic showing interconnected components and net labels

Editing object properties
What if you made a typing mistake when creating labels or need to modify the value of

a component? You can make the required changes by clicking on the object to select it and then

clicking Edit→Properties→Objects (find the shortcut for this if you don’t want to click three

menu levels every time!).

For practice, let us modify the properties of the voltage source component, vsource. The

vsource component is capable of generating a variety of stimuli.

Tip: It is possible, and often perferable, to use other sources from analogLib, such as vdc

for dc only and vsin for sine waves. vsource has multiple options, so it is used here to be able to

switch between them easily.

Bring up the properties form for vsource. In the next section, we will run dc, ac, and

transient simulations. For those simulations to work, we need to provide appropriate input

stimuli.

− For DC simulation, In the “DC voltage” box, type 1. This dc voltage is used to compute the

quiescent operating point of the circuit. Click on apply (at the top of the form). This is the input

for dc analysis.

− For ac analysis input, find the entry “Display small signal params” and turn the option on. The

form will update to display new form fields. Add 1V in the “AC magnitude. This input value will

be used for the AC analysis.

− For transient analysis, you need to choose the “Source type” field to the type you need. Enter

all the applicable entries and click on OK.

The vsource component is now configured for simulations. Click on “Check and save” to

save your design. Correct any errors or warnings before proceeding further.

Updated By: Robert Buckley Page 13 of 23 Updated: 12/21/2017

Always click “check and save” before running a simulation. Changing anything in

the schematic will make the simulation fail unless a “check and save” is run.

 Save often. Cadence tools have a tendency to crash, although this occurs more

often with more complex designs. Using “save” instead of “check and save” will save

whatever you are currently working on without a pop-up box pointing out errors and

possibly not saving.

Adding comments
It is good practice to add comments to the schematics. Click on

Create→Note→Text… and fill out the form. The comments are useful reminders to yourself

about the particular schematic and can also provide instructions for others if you share your

schematics.

Updated By: Robert Buckley Page 14 of 23 Updated: 12/21/2017

4. Simulating a circuit
Once the schematic capture is complete, we can simulate the circuit to test if it

performs according to the design. To do this, we must first open the Analog Design Environment

(ADE) window. To open the ADE window, click on

 Launch→ADE L

After opening the ADE window, go to

 Setup → Simulator/Directory/Host

and set the Project Directory path to

 /local/[username]/cadence/simulation

This way when you are running a simulation then the simulation data will be stored on

the /local/ rather than eating up your account space. It is also highly recommended to keep on

deleting the old simulation data from time to time so that everyone can have enough /local/

space.

The ADE window is used to select a simulator as well as set up all the options and

simulations for the simulator. The default simulator is in ADE is a simulator called Spectre from

Cadence. It has the same capabilities as Spice with enhancements introduced by Cadence. You

can choose a different simulator by clicking on Setup→Simulator/Directory/Host… menu

item. We will use Spectre for this lab and for most of our analog simulations.

Setting up the simulations
Familiarize yourself with the icons on

the right side of the window. These icons

represent the frequently used tasks in ADE.

Initiate the click sequence

Analysis→Choose. This will cause the

pop-up form “Choosing Analysis” to appear.

We will first run a dc analysis. Click on the

button next to dc in the form. The form

contents will update to show entries

relevant to a dc analysis. We would like to

save the dc operating point and sweep the

input voltage from 0 to 5 volts. To sweep the

input dc voltage, we first need to select the

appropriate parameter. In the “sweep

variable” box area, click on the “component

parameter” button. The updated form is shown on the right.

Updated By: Robert Buckley Page 15 of 23 Updated: 12/21/2017

To select the dc input voltage of the vsource, click on “Select component” and then click on

vsource in the schematics window. In the new form that pops up, click on the first entry, dc, to

choose the dc voltage of the vsource. You would follow a similar procedure to sweep other

parameter of a source, if desired.

Next, enter the range of sweep in the start and stop boxes. Click on Apply for all these

changes to take effect. This completes the dc analysis setup. Click OK to close the form and

return to ADE.

We did not specify a step size for the dc analysis. The step size is automatically chosen since

the “sweep type” is set to automatic. If the step size is too large you can chance the sweep type for

more finite control.

Setting up the outputs
We need to tell the simulator which node voltages we are interested in plotting once

the simulation is complete. To choose which signals to plot, click on the menu item

Outputs→To be Plotted →Select on Schematics. The bottom of the ADE tells you to

select the outputs you want plotted. Clicking on a net or a label selects voltage of the net to be

plotted. Find the schematics window and click on the three labels we added earlier. Once done,

press the escape key to get out of this selection mode.

By default, only the voltages in the circuit are saved. To be able to save and plot waveform of

a current, click on Outputs->Save all… in ADE and turn on the option “selected” for “Save device

currents (currents)”. To plot the current flowing into a device terminal, click on the red terminal (red

square on components). If you see a circle around that terminal, the current will be plotted.

Running the simulation and viewing the results
Now that we have set up which type of analysis we want to run and which outputs we

are interested in, let us run the simulation. Click on the green arrow icon to run the simulation.

Once the simulation is complete, a waveform viewer window will come up with the plots of the

outputs you selected in the previous step. Once again, familiarize yourself with the icons in the

waveform viewer for common operations you need to perform on the waveforms.

Updated By: Robert Buckley Page 16 of 23 Updated: 12/21/2017

5: ModelSim Introduction
 Throughout this course, we will be using Verilog to simulate and design digital circuits

and systems. This will be extremely useful in the final project, and will have a homework

question each week. Verilog is common simulation software for digital designers in industry and

has many features that will not be used in this class (EE 465 is the class to take if you are

interested in digital VLSI). Follow the steps below for running ModelSim, creating an inverter

behavioral file in Verilog HDL, creating a testbench, and finally running a simple simulation.

1. First, download ModelSim Environment Setup Script from the class website and place it in

the ‘Home’ (~/) directory. In a terminal, enter the command below to source the path of the

ModelSim software.

source ~/EE330ModelsimEnvironment.sh

Source will use the file you specify to attempt to extract information to be able to run another

program. Once the script finishes running, you can now run ModelSim by typing:

vsim &

At this point you should create a directory to hold all Verilog code you write for this class. We

suggest changing directory into ee330, “cd ~/ee330”, and running

mkdir verilog

‘mkdir’ is short for “make directory” and is how you create a directory in the terminal. Move to

this directory (cd verilog) and run the command to start modelsim (vsim &). This will save

work you do in your newly made verilog folder.

Updated By: Robert Buckley Page 17 of 23 Updated: 12/21/2017

2. Once ModelSim opens, the next step is to create a new project

• Click on File, then New, then choose Project on the drop down menu

• Enter your project name (this does not affect anything, “myVerilog” would work)

• Choose your project location (Use the directory created above, “~/ee330/verilog”)

• The default library name should be work.

• Click OK.

3. You will be asked if want to create the project directory.

• Click OK button

4. Next you will be presented with the Add Items to Project Dialog. While you can use this

dialog to create new source files or add existing ones, we will not be using this option for

this lab. We’ll add source files later so just click on the Close button

Updated By: Robert Buckley Page 18 of 23 Updated: 12/21/2017

5. You now have a project by the name of “myVerilog”.

6. Now we want to add a new file to our project.

• Right click in the project area, choose Add to Project, and choose New File…

• Choose Verilog as the file type

• In the File name: box enter the desired file name, in this case the file is named “inverter.v”

(once again this is different than the image)

• Click on the OK button

 The “inverter.v” file has been added to your project.

7. Double-click on the inverter.v file to show the file contents. You are now ready to specify the

inverter module’s functionality. Remember from prior coursework that there are 2 main

ways of specifying a module in Verilog. One is a functional view where the logic is explicitly

defined in terms of AND’s, OR’s, and other logic that can be converted directly into gates.

The other method is called a behavioral view, where the logic is more indirect. A behavioral

description often uses conditional statements and loops.

8. We compete the inverter specification as shown below:

• The line `timescale 1ns/ 1ps is located at the top of the file. The Verilog language uses

dimensionless time units, and these time units are mapped to “real” time units within the

simulator. The identifier `timescale is used to map to the “real” time values using the

statement `timescale <time1> / <time2>, where <time1> indicates the time units associated

with the #delay values, and the <time2> indicates the minimum step time used by the

simulator.

Note: Be sure to use the correct (`) character. The (`) is the not the single quotation mark (‘) and

is typically located on the same key as the ~. If you have errors in your file, this may be the

culprit.

Updated By: Robert Buckley Page 19 of 23 Updated: 12/21/2017

• The inverter module is also declared using module inverter(); and endmodule, but the ports

are left for us to define.

• Be sure to save the changes to the inverter.v file by clicking on File and choosing Save.

`timescale 1ns/1ps

module inverter (Vin, Vout);

 input Vin;

 output Vout;

 wire Vout;

 assign Vout = ~Vin;

endmodule

9. We also want to add a testbench and again follow Steps 6 – 8 to add “inverter_tb.v”. Then

we add the functionality of the testbench module as shown below.

`timescale 1ns/1ps

module inverter_tb();

 reg A;

 wire B;

 inverter inv(.Vin(A), .Vout(B));

 initial

 begin

 A = 1'b0;

 end

 always

 #20 A <= ~A;

endmodule

Updated By: Robert Buckley Page 20 of 23 Updated: 12/21/2017

Code Explained

`timescale 1ns/1ps : sets how long an operation lasts. This is used later in the
#20 A <= ~A line, which means every 20 timescale interval set A to equal not A.

module [Name](Parameters); the [Name] is the actual name of the device, to
be referenced by other devices. The Parameters are all inputs and outputs, things that can be
accessed by other devices.

Input Vin; Defines Vin as an input, which means another Verilog module can
control what this is.

output Vout; Defines Vin as an output, which means another Verilog module
can use it as an input.

wire Vout; Defines Vout as a wire in adition to an output. This allows it to work
with the assign statement.

assign Vout = ~Vin; This sets Vout to equal not Vin at all times.
reg A; This sets A as a register, which means it can be controlled using statements

later, such as;
initial

begin

 A = 1'b0;

end : initial sets the initial state of things inside of it, in this case the register A being

set to 0. Because A is 1 bit long A = [bits]’b[inary]0, if A were 4 bits it would be A = 4’b0000.

The ‘begin’ and ‘end’ work like parenthesize in other programs, they allow multiple lines to

be controlled by the ‘initial’ above.
always

 #20 A <= ~A; always@(event) causes what is inside the always statement to

occure when the event occurs. always@(posedge Clock) will cause whatever is in it to happen

when a signal called Clock becomes positive from negative. If ‘always’ has no @ statement it

happens whenever any signal changes in the code. The #20 A <= ~A means every 20

timescales A becomes not A (10, 01).

Endmodule : designates the end of the program.

Notice that the inputs of the inverter module are now defined differently. The inputs of
inverter.v are given values (like applying a bias from a voltage source on a real test bench to a
circuit on a breadboard) and the outputs are observed to see if they match expectations. More
detailed testbenches can be written and the skill of writing good testbenches is heavily desired.
Often the testbench takes longer to write and requires more skill than the actual module, and
thus a good testbench will be thorough but efficient to reduce wasted resources.

10. After saving both “inverter.v” and “inverter_tb.v”, we want to check the syntax of both files.

• Click on the Compile Menu and select Compile All

• If the syntax was correct, a checkmark will appear next to each file

• If the syntax was incorrect, the window at the bottom will list the individual errors.

11. Now it’s time to simulate the design.

• Click on the Simulate menu and choose Start Simulation

• Expand the selection for the work library by click on the + symbol on the left.

Updated By: Robert Buckley Page 21 of 23 Updated: 12/21/2017

• Select inverter_tb

 Uncheck the ‘Optimize Design’ box and click OK button

12. Next we create a simulation waveform window.

• Click on View menu, choose New Window, then choose Wave

• Add the signals that would like to monitor by dragging the signal from the middle pane to

the waveform window

13. We are now ready to simulate the design.

• Enter 80ns as the length of time we would like to simulate for in the Run Length box and

click the Run icon.

14. Our simulation is complete. Take a screen shot of the final waveform to include in your lab

report. Does this waveform match your expectation of an inverter? Why or why not? What

is wrong with this waveform when comparing to reality? How will this affect simulations of

more complex logic?

 Deliverables:
1. Answers to the pre-lab.

2. Simulation results and their comparison with the pre-lab calculations.

Updated By: Robert Buckley Page 22 of 23 Updated: 12/21/2017

Appendix A: Basic UNIX commands

This appendix introduces some basic commonly used UNIX commands. The following

notation is used: words in the fixed width font are commands you need to type exactly,

words in the italic font are to be substituted with appropriate words for your intended purpose,

and words within square brackets [] are optional. Unix command as well as file names are case-

sensitive.

gedit filename

Opens the file filename if it exists. If the file filename does not exist, a new file

by that name is created. Instead of gedit, you can use any text editor of your choice.

Some popular editors include vi, pico, emacs, etc.

ls -l [directory]

Lists the contents of the directory. If no directory name is supplied, contents of the

current directory are listed.

cp source_file target_file

Copies the source_file to a new file named target_file.

mv old_filename new_filename

Moves/renames the old_filename to new_filename. If the target new_filename includes

a path, the file is renamed and moved to that path. It can also be used to rename

directory.

rm trash_file

Removes/deletes the unwanted trash_file. Note that file removed cannot be

"undeleted", so make sure you know what you are going to delete.

mkdir new_directory

Makes a new subdirectory named new_directory within the current directory.

cd [directory]

Change current directory to the given directory. If no directory name is provided, the

current directory will change to user's home directory.

pwd

Shows the present working directory

Updated By: Robert Buckley Page 23 of 23 Updated: 12/21/2017

rmdir trash_directory

Remove/delete the unwanted trash_directory.

man command

Show the manual of the command. You can learn more detail about any given command

using man, e.g. man ls shows all available options and functionalities for ls

command.

more filename

Shows the contents of a file one screen at a time.

ps

Shows the currently running processes.

A couple of useful special symbols

~

The symbol ~ is used to denote the user’s home directory. If the complete path of the

home directory happens to be / home/username/ , then using ~ represents that

complete string. For example, if you want to look at the contents of a file in your home

directory, the following commands produce the same result

 more /home/username/myfile

 more ~/myfile

&

When launching a program that opens in a new window, placing an “&” at the end of

the command line allows the user to keep access to the command line, i.e., the “&”

instructs the program to run in the background.

These are just a few shell commands you need to know to get started. You are encouraged and

advised to learn other UNIX commands on your own, as they will increase your productivity, i.e.,

more you know, more efficient you will be.

