EE 330 Fall 2013
 Integrated Electronics

Lecture Instructor:
Randy Geiger 2133 Coover
rlgeiger@iastate.edu
294-7745

Course Web Site:
http://class.ece.iastate.edu/ee330/
Lecture: MWF 12:10 1312 Hoover
Lab: \quad Sec A Tues 8:00-10:50
Sec B Tues 11:00-1:50
Sec C Wed 5:10-8:00
Sec D Fri 8:00-10:50
Sec E Thur 8:00-10:50
Sec G Fri 1:10-4:00
Labs all meet in Rm 2046 Coover
Labs start this week!
HW Assignment 1 has been posted and is due this Friday

Laboratory Instructors and TAs:

Rui Bai
Rebekah Dejmal
Yunxi Guo
Craig Gustafson
Shiya Liu

bairui@iastate.edu

redejmal@iastate.edu
yunxig@iastate.edu
craigg@iastate.edu
Isy105@iastate.edu

Instructor Access:

- Office Hours
- Open-door policy
- MWF 1:00-2:00
reserved for EE 330 students
- By appointment
- Email
- rlgeiger@iastate.edu
- Include EE 330 in subject

Catalog Description

E E 330. Integrated Electronics. (Same as Cpr E 330.) (3-3) Cr. 4. F.S. Prereq: 201, credit or enrollment in 230, Cpr E 210. Semiconductor technology for integrated circuits. Modeling of integrated devices including diodes, BJTs, and MOSFETs. Physical layout. Circuit simulation. Digital building blocks and digital circuit synthesis. Analysis and design of analog building blocks. Laboratory exercises and design projects with CAD tools and standard cells.

Topical Coverage

- Semiconductor Processes
- Device Models (Diode,MOSFET,BJT, Thyristor)
- Layout
- Simulation and Verification
- Basic Digital Building Blocks
- Behavioral Design and Synthesis
- Standard cells
- Basic Analog Building Blocks

Topical Coverage Weighting

Textbook:

CMOS VLSI Design - A Circuits and Systems Perspective by Weste and Harris Addison Wesley/Pearson, 2011

- Fourth edition

Extensive course notes will be posted but lecture material will not follow textbook on a section-by-section basis

Grading Policy

3 Exams
1 Final
Homework
Quizzes/Attendance
Lab and Lab Reports Design Project

100 pts each 100 pts.
100 pts.total
100 pts
100 pts.total 100 pts.

- A letter grade will be assigned based upon the total points accumulated
- Grade breaks will be determined based upon overall performance of the class

Attendance and Equal Access Policy

Participation in all class functions and provisions for special circumstances will be in accord with ISU policy

Attendance of any classes or laboratories, turning in of homework, or taking any exams or quizzes is optional however grades will be assigned in accord with described grading policy. No credit will be given for any components of the course without valid excuse if students choose to not be present or not to contribute. Successful demonstration of ALL laboratory milestones and submission of complete laboratory reports for ALL laboratory experiments to TA by deadline established by laboratory instructor is, however, required to pass this course.

Due Dates and Late Reports

Homework assignments are due at the beginning of the class period on the designated due date. Late homework will be accepted without penalty up until 5:00 p.m. on the designated due date. Homework submitted after 5:00 p.m. will not be graded without a valid written excuse.

Laboratory reports are due at the beginning of the period when the next laboratory experiment is scheduled. Both a hard copy and a pdf file should be submitted. The file name on the pdf file should be of the following format:
EE330Lab1JonesP.pdf
where the lab number, your last name, and your first initial should be replaced as appropriate. The electronic version should be submitted to your TA and copied to the course instructor rlgeiger@iastate.edu All milestones must be demonstrated to and recorded by the TA prior to turning in the laboratory report. Late laboratory reports will be accepted with a 30% penalty within one week of the original due date unless a valid written excuse is provided to justify a late report submission. Any laboratory reports turned in after the one-week late period will not be graded. The last laboratory report will be due one week after the scheduled completion of the experiment.

Reference Texts:

Fundamentals of Microelectronics by B. Razavi, Wiley, 2008

CMOS Circuit Design, Layout, and Simulation (3rd Edition) by Jacob Baker, Wiley-IEEE Press, 2010.

The Art of Analog Layout by Alan Hastings, Prentice Hall, 2005

Reference Texts:

Microelectronic Circuit Design (4 $4^{\text {th }}$ edition)
By Richard Jaeger and Travis Blalock, McGraw Hill, 2010

Digital Integrated Circuits (2nd Edition) by Jan M. Rabaey, Anantha Chandrakasan, Borivoje Nikolic, Pre। 2002

VLSI Design Techniques for Analog and Digital Circuits by Geiger, Allen and Strader, McGraw Hill, 1990

Reference Texts:

Microelectronic Circuits (6th Edition)
by Sedra and Smith, Oxford, 2009

Other useful reference texts in the VLSI field:
Analog Integrated Circuit Design (2 $2^{\text {nd }}$ edition) by T. Carusone, D. Johns and K. Martin, Wiley, 2011

Principles of CMOS VLSI Design
by N. Weste and K. Eshraghian, Addison Wesley, 1992

CMOS Analog Circuit Design (3 ${ }^{\text {rd }}$ edition) by Allen and Holberg, Oxford, 2011.

Other useful reference texts in the VLSI field:

Design of Analog CMOS Integrated Circuits by B. Razavi, McGraw Hill, 1999
Design of Analog Integrated Circuits by Laker and Sansen, McGraw Hill, 1994

Analysis and Design of Analog Integrated Circuits-Fifth Edition Gray,Hurst, Lewis and Meyer, Wiley, 2009

Analog MOS Integrated Circuits for Signal Processing Gregorian and Temes, Wiley, 1986

Digital Integrated Circuit Design by Ken Martin, Oxford, 1999.

Untethered Communication Policy

Use them!
Hearing them ring represents business opportunity !
Please step outside of the room to carry on your conversations

The Semiconductor Industry

(just the "chip" part of the business)

How big is it?

How does it compare to other industries?

How big is the semiconductor industry?

1984	$\$ 25 \mathrm{~B}$
1990	$\$ 50 \mathrm{~B}$
1994	$\$ 100 \mathrm{~B}$
2004	$\$ 200 \mathrm{~B}$
2010	$\$ 304 \mathrm{~B}$
2012	$\$ 300 \mathrm{~B}$
2013	$\$ 310 \mathrm{~B}$ (projected)

Semiconductor sales do not include the sales of the electronic systems in which they are installed and this marked is much bigger !!

The Semiconductor Industry

How big is it ?

How does it compare to lowa-Centric Commodoties?

Iowa-Centric Commodities

Iowa-Centric Commodities

In the United States, lowa ranks:

First in Corn production
First in Soybean production
First in Egg production
First in Hog production
Second in Red Meat production

http://www.iowalifechanging.com/travel/iowafacts/statistics.html

Iowa-Centric Commodities

Beans

Corn

Iowa-Centric Commodities

Corn

Beans

Agricultural Commodities are a Major Part of the Iowa Economy

Value of Agricultural Commodoties

Corn and Beans Dominate the US Agricultural Comodoties

Value of Agricultural Commodities

Corn Production

Soybean Production

	Bushels (Billions)
lowa	2.2
United States	12
World	23

	Bushels (Billions)
Iowa	$\mathbf{0 . 3 4}$
United States	$\mathbf{3 . 1}$
World	$\mathbf{8 . 0}$

Based upon Aug 26, 2013 mid-morning market in Boone lowa

Soybeans

Value of Agricultural Commodities

(Based upon commodity prices in Boone lowa on Aug 26 October futures simplifying assumption: value constant around world)

Corn Production

Soybean Production

	Bushels (Billions)	Value (Billion Dollars)
lowa	2.2	$\$ 10.1$
United States	12	$\$ 54.8$
World	23	$\$ 108$

	Bushels (Millions)	Value (Billion Dollars)
Iowa	$\mathbf{3 4 0}$	$\$ 4.5$
United States	$\mathbf{3 , 1 0 0}$	$\$ 41.3$
World	$\mathbf{8 , 0 0 0}$	$\$ 106$

World 2013 semiconductor sales of \$310B about 45\% larger than value of total corn and soybean production today!

Semiconductor sales has averaged about 300\% larger than value of total corn and soybean production for much of past two decades!

The Semiconductor Industry

How big is it?
About \$310B/Year and growing
How does it compare to lowa-Centric Commodities?

Larger than major agricultural commodities (1.5X to 3X)

The semiconductor industry is one of the largest sectors in the world economy and continues to grow

How is the semiconductor industry distributed around the world?

Rank 2011	Rank $\mathbf{2 0 1 2}$	Vendor	2011 Revenue2012 Revenue	2011-2012 Growth (\%)	2012 Market Share (\%)
1	1	Intel			-3.1

From: http://www.gartner.com/newsroom/id/240521

Applications of Electronic Devices

- Communication systems
- Computation systems
- Instrumentation and control
- Signal processing
- Biomedical devices
- Automotive
- Entertainment
- Military
- Many-many more

Applications often incorporate several classical application areas
Large number (billions) of devices (transistors) in many applications
Electronic circuit designers must understand system operation to provide useful electronic solutions

Automotive industry seeking electronic solutions to four main issues

Part. 1

Electronics to account for 40\% of automotive production costs by 2015

The proportion of electronic components used in motor vehicles has been increasing steeply in recent years. In fact, many industry observers expect electronic components to account for 40% of total car production costs in the near future. Automakers are already relying more heavily on electronics technology, with electronic components making up 10$15 \%$ of the total production cost of a 2007-model compact car such as the Toyota Corolla, for $20-30 \%$ of the cost of luxury models like Lexus-brand cars, and for around 50% in the case of hybrid electric vehicles (HEVs) such as the Toyota Prius.
Electronic components currently comprise some 20-30\% of total costs for all car categories, and this figure is expected to reach 40% or so by 2015 . Roughly speaking, materials and components represent 70% of total car production costs, while labor costs account for 15% and miscellaneous expenses for the remaining 15\%. If present trends continue, by 2015 electronic component costs will comprise the majority of materials/components costs.

An example of electronic opportunities

Consider High Definition Television (HDTV)
Video:
Frame size: 1920×1080 pixels (one HDTV frame size)

Frame rate: 24 frames/second (one HDTV frame rate)
Pixel Resolution: 8 bits each RGB plus 8 bits alpha (32 bits/pixel) (no HDTV standard)
RAW (uncompressed) video data requirements: $\left(1920^{*} 1080\right)^{*} 24^{*}(32)=1.59 \mathrm{G}$ bits $/ \mathrm{sec}$

Audio:

Sample rate: 192 K SPS (44.1 more common)
Resolution: 24 bits (16 bits or less usually adequate)
Number of Channels: 2 (Stereo)
RAW (uncompressed) audio data requirements: $192 \mathrm{~K}^{*} 24^{*} 2=9.2 \mathrm{Mbits} / \mathrm{sec}$

- RAW video data rate approximately 170X the RAW audio data rate
- Are RAW video data rates too large to be practical ??

How much would it cost to download a 2-hour HDTV "movie" using RAW audio and video on a Verizon Smart Phone today?

Verizon Data Plan (after 1.5GB included in monthly fee) $\quad \$ 15 / \mathrm{GB}$

RAW (uncompressed) video data requirements: (1920*1080)*24*(32) $=1.59 \mathrm{G}$ bits $/ \mathrm{sec}$
RAW (uncompressed) audio data requirements: 192K*24*2 = 9.2 Mbits/sec

Total bits: $1.5992 \times 60 \times 120 \mathrm{~Gb}=11,514 \mathrm{~Gb}$
Total bytes: $1.5992 \times 60 \times 120 / 8 G B=1,439 G B$

Total cost: $\$ 21,589$

- Moving audio and video data is still expensive and still challenging !
- Be careful about what you ask for !

What can be done to reduce these costs?

An example of electronic opportunities

Consider High Definition Television (HDTV)
Video:

RAW (uncompressed) video data requirements: (1920*1080)*24*(32) $=1.59 \mathrm{G}$ bits/sec

Audio:

RAW (uncompressed) audio data requirements: $192 \mathrm{~K}^{*} 24^{*} 2=9.2 \mathrm{Mbits} / \mathrm{sec}$
Compressive video coding widely used to reduce data speed and storage requirements

- HDTV video streams used by the broadcast industry are typically between $14 \mathrm{MB} / \mathrm{sec}$ and $19 \mathrm{MB} / \mathrm{sec}$ (a compressive coding of about 14:1)
- But even with compression, the amount of data that must be processed and stored is very large
- Large electronic circuits required to gather, process, record, transmit, and receive data for HDTV

How much would it cost to download a 2-hour HDTV "movie" using compressed audio and video on a Verizon Smart Phone today? Assume total signal compressed to $14 \mathrm{MB} /$ sec
 Verizon Data Plan (after 1.5GB included in monthly fee)
 \$15/GB

Total bytes: $14 \mathrm{MB} \times 60 \times 120 \mathrm{~GB}=101 \mathrm{~GB}$

Total cost: $\$ 1,515$

Moving audio and video data is still expensive and still challenging !

Selected Semiconductor Trends

- Microprocessors
- DRAMS
- FPGA

Microprocessors

Main article: microprocessor chronology

Processor	Transistor count ${ }_{\text {d }}$	Date of introduction 回	Manufacturer	Process	Area ${ }^{\text {a }}$
Intel 4004	2,300	1971	Intel	$10 \mu \mathrm{~m}$	$12 \mathrm{~mm}^{2}$
Intel 8008	3,500	1972	Intel	$10 \mu \mathrm{~m}$	$14 \mathrm{~mm}^{2}$
MOS Technology 6502	3,510	1975	MOS Technology		$21 \mathrm{~mm}^{2}$
Motorola 6800	4,100	1974	Motorola		$16 \mathrm{~mm}^{2}$
Intel 8080	4,500	1974	Intel	$6 \mu \mathrm{~m}$	$20 \mathrm{~mm}^{2}$
RCA 1802	5,000	1974	RCA	$5 \mu \mathrm{~m}$	$27 \mathrm{~mm}^{2}$
Intel 8085	6,500	1976	Intel	$3 \mu \mathrm{~m}$	$20 \mathrm{~mm}^{2}$
Zilog Z80	8,500	1976	Zilog	$4 \mu \mathrm{~m}$	$18 \mathrm{~mm}^{2}$
Motorola 6809	9,000	1978	Motorola	$5 \mu \mathrm{~m}$	$21 \mathrm{~mm}^{2}$
Intel 8086	29,000	1978	Intel	$3 \mu \mathrm{~m}$	$33 \mathrm{~mm}^{2}$
Intel 8088	29,000	1979	Intel	$3 \mu \mathrm{~m}$	$33 \mathrm{~mm}^{2}$
Intel 80186	55,000	1982	Intel		
Motorola 68000	68,000	1979	Motorola	$4 \mu \mathrm{~m}$	$44 \mathrm{~mm}^{2}$
Intel 80286	134,000	1982	Intel	$1.5 \mu \mathrm{~m}$	
Intel 80386	275,000	1985	Intel	$1.5 \mu \mathrm{~m}$	$104 \mathrm{~mm}^{2}$
Intel 80486	1,180,000	1989	Intel	$1 \mu \mathrm{~m}$	
Pentium	3,100,000	1993	Intel	$0.8 \mu \mathrm{~m}$	
AMD K5	4,300,000	1996	AMD	$0.5 \mu \mathrm{~m}$	
Pentium II	7,500,000	1997	Intel	$0.35 \mu \mathrm{~m}$	
AMD K6	8,800,000	1997	AMD	$0.35 \mu \mathrm{~m}$	
Pentium III	9,500,000	1999	Intel	$0.25 \mu \mathrm{~m}$	

Processor ${ }_{\text {® }}$ Tra	Transistor count ${ }_{\text {® }}$ D	Date of introduction ${ }_{\text {W }}$	Manufacturer 回 Process 龱	Area ${ }^{\text {a }}$	
Pentium 4	42,000,000	2000	Intel	180 nm	
Atom	47,000,000	2008	Intel	45 nm	
Barton	54,300,000	2003	AMD	130 nm	
AMD K8	105,900,000	2003	AMD	130 nm	
Itanium 2	220,000,000	2003	Intel	130 nm	
Cell	241,000,000	2006	Sony/IBM/Toshiba	90 nm	
Core 2 Duo	291,000,000	2006	Intel	65 nm	
AMD K10	$463,000,000{ }^{[1]}$	2007	AMD	65 nm	
AMD K10	$758,000,000{ }^{[1]}$	2008	AMD	45 nm	
Itanium 2 with 9MB cache	592,000,000	2004	Intel	130 nm	
Core i7 (Quad)	731,000,000	2008	Intel	45 nm	$263 \mathrm{~mm}^{2}$
POWER6	789,000,000	2007	IBM	65 nm	$341 \mathrm{~mm}^{2}$
Six-Core Opteron 2400	904,000,000	2009	AMD	45 nm	
Six-Core Core i7	1,170,000,000	2010	Intel	32 nm	
POWER7	1,200,000,000	2010	IBM	45 nm	$567 \mathrm{~mm}^{2}$
z196 ${ }^{[2]}$	1,400,000,000	2010	IBM	45 nm	$512 \mathrm{~mm}^{2}$
Dual-Core Itanium 2	1,700,000,000 ${ }^{[3]}$	2006	Intel	90 nm	$596 \mathrm{~mm}^{2}$
Six-Core Xeon 7400	1,900,000,000	2008	Intel	45 nm	
Quad-Core Itanium Tukwila	$2,000,000,000{ }^{[4]}$	4] 2010	Intel	65 nm	
8-Core Xeon Nehalem-EX	$2,300,000,000{ }^{[5]}$	[1] 2010	Intel	45 nm	

GPUs

Processor	Transistor count	Date of introduction	Manufacturer	Process	Area
G80	$681,000,000$	2006	NVIDIA	90 nm	$480 \mathrm{~mm}^{2}$
RV770	$956,000,000^{[6]}$	2008	AMD	55 nm	$260 \mathrm{~mm}^{2}$
RV850	$1,040,000,000^{[7]}$	2009	AMD	40 nm	$170 \mathrm{~mm}^{2}$
GT200	$1,400,000,000^{[8]}$	2008	NVIDIA	55 nm	$576 \mathrm{~mm}^{2}$
RV870	$2,154,000,000^{[9]}$	2009	AMD	40 nm	$334 \mathrm{~mm}^{2}$
GF100	$3,000,000,000^{[10]}$	2010	NVIDIA	40 nm	$529 \mathrm{~mm}^{2}$

FPGA

FPGA	Transistor count	Date of introduction	Manufacturer	Process
Area				
Virtex	$\sim 70,000,000$	1997	Xilinx	
Virtex-E	$\sim 200,000,000$	1998	Xilinx	
Virtex-II	$\sim 350,000,000$	2000	Xilinx	130 nm
Virtex-II PRO	$\sim 430,000,000$	2002	Xilinx	
Virtex-4	$1,000,000,000$	2004	Xilinx	90 nm
Virtex-5	$1,100,000,000^{[11]}$	2006	Xilinx	65 nm
Stratix IV	$2,500,000,0000^{[12]}$	2008	Altera	40 nm

Today !

Processor

Quad-Core Inte ${ }^{\circledR}$ Core i7 Processor Up to 3.4 GHz in 32 nm CMOS
Power Dissipation: 95 watts

Figure 1. Microprocessor complexity (transistor count) over time
From ISSCC 2010 Summary

Figure 2. Microprocessor power consumption over time
From ISSCC 2010 Summary

Figure 3. Microprocessor clock frequency over time
From ISSCC 2010 Summary

Figure 4. Microprocessor core count over time

Memory Trends

Figure 7.1: Actual and predicted evolution of circuit complexity in DRAMs and microprocessors.

Physics of semiconductor devices By Jean-Pierre Colinge, Cynthia A. Colinge

Memory Trends

91cron						
Products Innovations		How to Buy		Support	About Micron	
Home + Froducts + DRAM + DDR3 SDRAM + DDR3 SDRAM Parts Catalog						
DDR3 SDRAM Part Catalog Part Catalog Tips - Filter by Attribute Values: Select appropriate attribute values from the column drop down (\mathbf{Z}) ar - Add or Remove Values: Select or deselect values from the column drop down (\mathbf{Z}) and click "Up - Compare Parts: Select the checkboxes and click "Compare" - Reset Values: Click "Reset" to reset filtered values - Export to Spreadsheet: To download part table to a spreadsheet, select "Export to Spreadsheet"						
Update	Reset	Export to Spread	sheet			
Part Number	Density	$\begin{aligned} & \text { Part } \\ & \underline{\text { Status }} \end{aligned}$	RoHS	Depth	Width	Voltage
Compare	\times 区	$\times 1$	\times	\times 区	\times B	$\times{ }^{1}$
Г MT41/128M16HA-1076	${ }^{26 b}$	Sampling	Yes	${ }^{128 M b}$	$\times 16$	1.5 V
Г MT41/128M16HA-125	26b	Production	Yes	128 mb	$\times 16$	1.5 V
Г MT411128M16HA-125G	26b	Sampling	Yes	128 Mb	$\times 16$	1.5 V
Г MT41 J128M16HA-15E	26b	Production	Yes	128 Mb	$\times 16$	1.5 V
Г MT411128M31P-107E	${ }^{16 \mathrm{~b}}$	EOL Pending	Yes	128 mb	$\times 8$	1.5 V
$\square_{\text {MT411128Mมู-125 }}$	${ }^{16 b}$	Production	Yes	128 Mb	$\times 8$	1.5 V
$\square_{\text {MT411128M31P-15E }}$	${ }^{\text {Gb }}$	Production	Yes	128 Mb	x8	1.5 V
	${ }^{16 \mathrm{~b}}$	Production	Yes	128 Mb	$\times 8$	1.5 V
$\square_{\text {MT41J164THD-15E }}$	4 Cb	Production	Yes	16b	$\times 4$	1.5 V

Memory Trends

Snmsun	Products		Support	About Us		
MEMORY $>$ Computing DRAM $>$ DDR3 $>$ Component						
- Component >	- Registered DIMM >			- Unbuffered DIMM 》		
Partnumber		Density	Organization	Voltage(V)	Speed	
K4B4G0446A	\pm	4G bit	1Gx4	1.5,1.35	F8, H9, K0	
K4B4G0846A	\pm	4G bit	512 Mx 8	1.5,1.35	F8, H9, K0	
K4B2G0446D	\pm	2G bit	$512 \mathrm{M} \times 4$	1.5,1.35	F8, H9, K0,MA	
K4B2G0846D	\pm	2G bit	256Mx8	1.5,1.35	F8,H9,K0,MA	
K4B2G0446C	\pm	2G bit	$512 \mathrm{M} \times 4$	1.5,1.35	F8, H9, K0	
K4B2G0846C	\pm	2G bit	256 Mx 8	1.5,1.35	F8, H9,K0	
K4B2G0446B	\pm	2G bit	512 Mx 4	1.5	F8, H9,K0	
K4B2G0846B		2G bit	256Mx8	1.5	F8, H9, K0	

NAND Flash Memory: Significant developments in NAND flash memory over the past few years, resulting in high-density, low-power, and low-cost storage solutions that are enabling the replacement of traditional hard-disk storage with solid-state disks (SSDs). Figure 5 shows the observed trend in NAND flash capacities presented at ISSCC in the past 12 years. Note that in 2010, the reduction in process feature sizes, coupled with advanced multi-level cell (MLC) techniques have yielded a $32 \mathrm{~Gb} /$ chip capacity in a 32 nm technology with $2 \mathrm{~b} /$ cell operation. .

NAND Flash Trend

ISSCC papers

- MLC (Multi-Level Cell) : 2bits/cell
- SLC (Single-Level Cell) : 1bit/cell

Figure 5. NAND Flash Memory Trends
From ISSCC 2010 Summary

Data rate trend vs. history

Figure 8. Data Rate Trend Chart
From ISSCC 2010 Summary

Selected Semiconductor Trends

- Microprocessors
- State of the art technology is now 22 nm with over 5 Billion transistors on a chip
- DRAMS
- State of the art is now 4G bits on a chip which requires somewhere around 4.5 Billion transistors
- FPGA
- FPGAs currently have over 7 Billion transistors and are growing larger
Device count on a chip has been increasing rapidly with time, device size has been decreasing rapidly with time and speed/performance has been rapidly increasing

Moore's Law

From Webopedia
The observation made in 1965 by Gordon Moore, co-founder of Intel, that the number of transistors per square inch on integrated circuits had doubled every year since the integrated circuit was invented. Moore predicted that this trend would continue for the foreseeable future. In subsequent years, the pace slowed down a bit, but data density has doubled approximately every 18 months, and this is the current definition of Moore's Law, which Moore himself has blessed. Most experts, including Moore himself, expect Moore's Law to hold for at least another two decades.

Feature Size

The feature size of a process generally corresponds to the minimum lateral dimensions of the transistors that can be fabricated in the process

Bounding region often a factor of 10 or more larger
Feature Size of MOS Transistor

Moore's Law

(from Wikipedia)
Moore's law is the empirical observation that the complexity of integrated circuits, with respect to minimum component cost, doubles every 24 months[1]. It is attributed to Gordon E. Moore[2], a co-founder of Intel.

- Often misinterpreted or generalized
- Many say it has been dead for several years
- Many say it will continue for a long while
- Not intended to be a long-term prophecy about trends in the semiconductor field

Device scaling, device count, circuit complexity, ... will continue to dramatically improve for the foreseeable future !!

ITRS Technology Predictions

ITRS 2004 Supply Voltage Predictions

ITRS Technology Predictions

Minimum ASIC Gate Length

Challenges

- Managing increasing device count
- Short lead time from conception to marketplace
- Process technology advances
- Device Performance Degradation
- Increasing variability
- Increasing pressure for cost reduction
- Power Dissipation

Future Trends and Opportunities

- Is there an end in sight?

No! But the direction the industry will follow is not yet known and the role semiconductor technology plays on society will increase dramatically!

- Will engineers trained in this field become obsolete at mid-career ?

No! Engineers trained in this field will naturally evolve to support the microelectronics technology of the future. Integrated Circuit designers are now being trained to efficiently manage enormous levels of complexity and any evolutionary technology will result in even larger and more complexity systems with similar and expanded skills being required by the engineering community with the major changes occurring only in the details.

Future Trends and Opportunities

- Will engineers trained in this field be doing things the same way as they are now at midcareer?
No! There have been substantive changes in approaches every few years since 1965 and those changes will continue. Continuing education to track evolutionary and revolutionary changes in the field will be essential to remain productive in the field.
- What changes can we expect to see beyond the continued geometric growth in complexity (capability) ?
That will be determined by the creativity and marketing skills of those who become immersed in the technology. New "Gordon Moores", "Bill Gates" and "Jim Dells" will evolve.

Creation of Integrated Circuits

Most integrated circuits are comprised of transistors along with a small number of passive components and maybe a few diodes

This course will focus on understanding how transistors operate and on how they can be interconnected and possibly combined with a small number of passive components to form useful integrated circuits

End of Lecture 1

