IC Fabrication Technology
Part III
- Interconnects
- Back-end Processes
Quiz 9

What is the major reason shallow trench isolation (STI) is used instead of Local Oxidation to create the field oxide in a MOS process?

Silicon Nitride

Etched Shallow Trench

Pad Oxide

p⁻ Silicon

Shallow Trench Isolation (STI)
And the number is
And the number is
Quiz 9

What is the major reason shallow trench isolation (STI) is used instead of Local Oxidation to create the field oxide in a MOS process?

Solution:

STI helps keep the surface of the wafer planar
IC Fabrication Technology

- Crystal Preparation
- Masking
- Photolithographic Process
- Deposition
- Implantation
- Etching
- Diffusion
- Oxidation
- Epitaxy
- Polysilicon
- Contacts, Interconnect and Metalization
- Planarization
Etching

Selective Removal of Unwanted Materials

• Wet Etch
 – Inexpensive but under-cutting a problem

• Dry Etch
 – Often termed ion etch or plasma etch
Diffusion

- Controlled Migration of Impurities
 - Time and Temperature Dependent
 - Both vertical and lateral diffusion occurs
 - Crystal orientation affects diffusion rates in lateral and vertical dimensions
 - Materials Dependent
 - Subsequent Movement
 - Electrical Properties Highly Dependent upon Number and Distribution of Impurities
 - Diffusion at 800°C to 1200°C

- Source of Impurities
 - Deposition
 - Ion Implantation
 - Only a few Å deep
 - More accurate control of doping levels
 - Fractures silicon crystaline structure during implant
 - Annealing occurs during diffusion
Oxidation

- SiO$_2$ is widely used as an insulator
 - Excellent insulator properties
- Used for gate dielectric
 - Gate oxide layers very thin
- Used to separate devices by raising threshold voltage
 - termed field oxide
 - field oxide layers very thick
- Methods of Oxidation
 - Thermal Growth (LOCOS)
 - Consumes host silicon
 - x units of SiO$_2$ consumes .47x units of Si
 - Undercutting of photoresist
 - Compromises planar surface for thick layers
 - Excellent quality
 - Chemical Vapor Deposition
 - Needed to put SiO$_2$ on materials other than Si
Epitaxy

• Single Crystaline Extension of Substrate Crystal
 – Commonly used in bipolar processes
 – CVD techniques
 – Impurities often added during growth
 – Grows slowly to allow alignmnmnt with substrate
Polysilicon

- Elemental contents identical to that of single crystalline silicon
 - Electrical properties much different
 - If doped heavily makes good conductor
 - If doped moderately makes good resistor
 - Widely used for gates of MOS devices
 - Widely used to form resistors
 - Grows fast over non-crystalline surface
 - Silicide often used in regions where resistance must be small
 - Refractory metal used to form silicide
 - Designer must indicate where silicide is applied (or blocked)
Review from Last Time

Polysilicon

Polysilicon

Single-Crystaline Silicon
IC Fabrication Technology

- Crystal Preparation
- Masking
- Photolithographic Process
- Deposition
- Etching
- Diffusion
- Ion Implantation
- Oxidation
- Epitaxy
- Polysilicon
- Contacts, Interconnect and Metalization
- Planarization
Contacts, Interconnect and Metalization

• Contacts usually of a fixed size
 – All etches reach bottom at about the same time
 – Multiple contacts widely used
 – Contacts not allowed to Poly on thin oxide in most processes
 – Dog-bone often needed for minimum-length devices
Contacts

Unacceptable Contact

Vulnerable to pin holes
(usually all contacts are same size)

Acceptable Contact
Contacts

Acceptable Contact
Contacts

Design Rule Violation

“Dog Bone” Contact
Contacts

Common Circuit Connection

Standard Interconnection

Buried Contact

Can save area but not allowed in many processes
Metalization

• Aluminum widely used for interconnect
• Copper finding some applications
• Must not exceed maximum current density
 – around 1ma/u
• Ohmic Drop must be managed
• Parasitic Capacitances must be managed
• Interconnects from high to low level metals require connections to each level of metal
• Stacked vias permissible in some processes
Multiple Level Interconnects

3-rd level metal connection to n-active without stacked vias
Multiple Level Interconnects

3-rd level metal connection to n-active with stacked vias
Interconnects

- Metal is preferred interconnect
 - Because conductivity is high
- Parasitic capacitances and resistances of concern in all interconnects
- Polysilicon used for short interconnects
 - Silicided to reduce resistance
 - Unsilicided when used as resistors
- Diffusion used for short interconnects
 - Parasitic capacitances are high
Interconnects

• Metal is preferred interconnect
 – Because conductivity is high

Parasitic capacitances and resistances of concern in all interconnects

• Polysilicon used for short interconnects
 – Silicided to reduce resistance
 – Unsilicided when used as resistors

• Diffusion used for short interconnects
 – Parasitic capacitances are high
Resistance in Interconnects
Resistivity in Interconnects

\[\rho \] independent of geometry and characteristic of the process.

\[R = \frac{L}{A \rho} \]

\[A = HW \]
Resistance in Interconnects

$R = \frac{L}{A \rho} = \frac{L}{W \left[\frac{\rho}{H} \right]}$

$H \ll W$ and $H \ll L$ in most processes
Interconnect behaves as a “thin” film
Sheet resistance often used instead of conductivity to characterize film

$R_\square = \rho / H$ $R = R \ [L / W]$
Resistance in Interconnects

The "Number of Squares" approach to resistance determination in thin films

\[R = R \left[\frac{L}{W} \right] \]

\[N_S = 21 \]

\[L / W = 21 \]

\[R = R \ N_S \]
Resistance in Interconnects

The “squares” approach is not exact but is good enough for calculating resistance in almost all applications.

In this example:

\[N_S = 12 + 0.55 + 0.7 = 13.25 \]

\[R = R \ 13.25 \]
Example:

The layout of a film resistor with electrodes A and B is shown. If the sheet resistance of the film is $40 \ \Omega/\mu m$, determine the resistance between nodes A and B.
Solution

\[N_S = 9 + 9 + 3 + 2 \times 0.55 = 22.1 \]

\[R_{AB} = R \times N_S = 40 \times 22.1 = 884 \Omega \]
Resistance in Interconnects
(can be used to build resistors!)

- Serpentine often used when large resistance required
- Polysilicon or diffusion often used for resistor creation
- Effective at managing the aspect ratio of large resistors
- May include hundreds or even thousands of squares
Resistance in Interconnects
(can be used to build resistors!)

Area requirements determined by both minimum width and minimum spacing design rules
Capacitance in Interconnects

\[C = C_D A \]

\(C_D \) is the capacitance density and \(A \) is the area of the overlap.
Capacitance in Interconnects

Equivalent Circuit

\[C_{12} = CD_{12} A_5 \]
\[C_{1S} = CD_{1S} (A_1 + A_2 + A_5) \]
\[C_{2S} = CD_{2S} (A_3 + A_4) \]
Example

Two metal layers, Metal 1 and Metal 2, are shown. Both are above field oxide. Determine the capacitance between Metal 1 and Metal 2. Assume the process has capacitance densities from M_1 to substrate of $0.05 \text{fF}/\mu\text{m}^2$, from M_1 to M_2 of $0.07 \text{fF}/\mu\text{m}^2$ and from M_2 to substrate of $0.025 \text{fF}/\mu\text{m}^2$.
Example

Solution

\[A_{C_1C_2} = \varepsilon 0 \mu \mathbf{m}^2 = 400 \mu^2 \]

The capacitance density from \(M_1 \) to \(M_2 \) is \(.07 \text{fF/} \mu^2\)

\[C_{12} = A_{C_1C_2} \cdot C_{D_{12}} = 400 \mu^2 \cdot 0.07 \text{fF/} \mu^2 = 28 \text{fF} \]
Capacitance and Resistance in Interconnects

• See MOSIS WEB site for process parameters that characterize parasitic resistances and capacitances

www.mosis.org
INTRODUCTION: This report contains the lot average results obtained by MOSIS from measurements of MOSIS test structures on each wafer of this fabrication lot. SPICE parameters obtained from similar measurements on a selected wafer are also attached.

COMMENTS: American Microsystems, Inc. C5

<table>
<thead>
<tr>
<th>TRANSISTOR PARAMETERS</th>
<th>W/L</th>
<th>N-CHANNEL</th>
<th>P-CHANNEL</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MINIMUM</td>
<td>3.0/0.6</td>
<td>0.79</td>
<td>-0.92</td>
<td>volts</td>
</tr>
<tr>
<td>Vth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHORT</td>
<td>20.0/0.6</td>
<td>446</td>
<td>-239</td>
<td>uA/um</td>
</tr>
<tr>
<td>Idss</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vth</td>
<td>0.68</td>
<td>-0.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vpt</td>
<td>10.0</td>
<td>-10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WIDE</td>
<td>20.0/0.6</td>
<td>< 2.5</td>
<td>< 2.5</td>
<td>pA/um</td>
</tr>
<tr>
<td>Ids0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LARGE</td>
<td>50/50</td>
<td>0.68</td>
<td>-0.95</td>
<td>volts</td>
</tr>
<tr>
<td>Vth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vjbkd</td>
<td>10.9</td>
<td>-11.6</td>
<td></td>
<td>volts</td>
</tr>
<tr>
<td>Ijlk</td>
<td><50.0</td>
<td><50.0</td>
<td></td>
<td>pA</td>
</tr>
<tr>
<td>Gamma</td>
<td>0.48</td>
<td>0.58</td>
<td>V^0.5</td>
<td></td>
</tr>
<tr>
<td>K' (Uo*Cox/2)</td>
<td>56.4</td>
<td>-18.2</td>
<td></td>
<td>uA/V^2</td>
</tr>
<tr>
<td>Low-field Mobility</td>
<td>463.87</td>
<td>149.69</td>
<td>cm^2/V*s</td>
<td></td>
</tr>
</tbody>
</table>

COMMENTS: Poly bias varies with design technology. To account for mask bias use the appropriate value for the parameter XL in your SPICE model card.

<table>
<thead>
<tr>
<th>Design Technology</th>
<th>XL (um)</th>
<th>XW (um)</th>
</tr>
</thead>
</table>
SCMOS_SUBM (lambda=0.30) 0.10 0.00
SCMOS (lambda=0.35) 0.00 0.20

<table>
<thead>
<tr>
<th>FOX TRANSISTORS</th>
<th>GATE</th>
<th>N+ACTIVE</th>
<th>P+ACTIVE</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vth</td>
<td>Poly</td>
<td>>15.0</td>
<td><-15.0</td>
<td>volts</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROCESS PARAMETERS</th>
<th>N+</th>
<th>P+</th>
<th>POLY</th>
<th>POLY2 HR</th>
<th>POLY2</th>
<th>M1</th>
<th>M2</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheet Resistance</td>
<td>83.5</td>
<td>105.3</td>
<td>23.5</td>
<td>999</td>
<td>44.2</td>
<td>0.09</td>
<td>0.10</td>
<td>ohms/sq</td>
</tr>
<tr>
<td>Contact Resistance</td>
<td>64.9</td>
<td>149.7</td>
<td>17.3</td>
<td>29.2</td>
<td>0.97</td>
<td></td>
<td></td>
<td>ohms</td>
</tr>
<tr>
<td>Gate Oxide Thickness</td>
<td>142</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>angstrom</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROCESS PARAMETERS</th>
<th>M3</th>
<th>N\PLY</th>
<th>N_W</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheet Resistance</td>
<td>0.05</td>
<td>824</td>
<td>816</td>
<td>ohms/sq</td>
</tr>
<tr>
<td>Contact Resistance</td>
<td>0.79</td>
<td></td>
<td></td>
<td>ohms</td>
</tr>
</tbody>
</table>

COMMENTS: N\POLY is N-well under polysilicon.

<table>
<thead>
<tr>
<th>CAPACITANCE PARAMETERS</th>
<th>N+</th>
<th>P+</th>
<th>POLY</th>
<th>POLY2</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>N_W</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area (substrate)</td>
<td>425</td>
<td>731</td>
<td>84</td>
<td>27</td>
<td>12</td>
<td>7</td>
<td>37</td>
<td>aF/um^2</td>
<td></td>
</tr>
<tr>
<td>Area (N+active)</td>
<td>2434</td>
<td></td>
<td></td>
<td>35</td>
<td>16</td>
<td>11</td>
<td></td>
<td>aF/um^2</td>
<td></td>
</tr>
<tr>
<td>Area (P+active)</td>
<td>2335</td>
<td></td>
<td></td>
<td>938</td>
<td>56</td>
<td>15</td>
<td>9</td>
<td>aF/um^2</td>
<td></td>
</tr>
<tr>
<td>Area (poly)</td>
<td></td>
<td>49</td>
<td>938</td>
<td>56</td>
<td>15</td>
<td>9</td>
<td></td>
<td>aF/um^2</td>
<td></td>
</tr>
<tr>
<td>Area (poly2)</td>
<td></td>
<td>31</td>
<td>13</td>
<td>31</td>
<td>13</td>
<td></td>
<td></td>
<td>aF/um^2</td>
<td></td>
</tr>
<tr>
<td>Area (metal1)</td>
<td></td>
<td>35</td>
<td>949</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td>aF/um^2</td>
<td></td>
</tr>
<tr>
<td>Area (metal2)</td>
<td>344</td>
<td>238</td>
<td>49</td>
<td>33</td>
<td>23</td>
<td></td>
<td></td>
<td>aF/um</td>
<td></td>
</tr>
<tr>
<td>Fringe (substrate)</td>
<td>59</td>
<td>38</td>
<td>28</td>
<td>59</td>
<td>38</td>
<td>28</td>
<td></td>
<td>aF/um</td>
<td></td>
</tr>
<tr>
<td>Fringe (poly)</td>
<td>51</td>
<td>34</td>
<td>31</td>
<td>51</td>
<td>34</td>
<td></td>
<td></td>
<td>aF/um</td>
<td></td>
</tr>
<tr>
<td>Fringe (metal1)</td>
<td>52</td>
<td></td>
<td></td>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td>aF/um</td>
<td></td>
</tr>
<tr>
<td>Overlap (N+active)</td>
<td>232</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>aF/um</td>
<td></td>
</tr>
<tr>
<td>Overlap (P+active)</td>
<td>312</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>aF/um</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CIRCUIT PARAMETERS</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverters</td>
<td>K</td>
</tr>
<tr>
<td>Vinv</td>
<td>1.0</td>
</tr>
<tr>
<td>Vinv</td>
<td>1.5</td>
</tr>
<tr>
<td>Vol (100 uA)</td>
<td>2.0</td>
</tr>
</tbody>
</table>
Voh (100 uA) 2.0 4.85 volts
Vinv 2.0 2.46 volts
Gain 2.0 -19.72

Ring Oscillator Freq.
DIV256 (31-stg,5.0V) 95.31 MHz
D256_WIDE (31-stg,5.0V) 147.94 MHz

Ring Oscillator Power
DIV256 (31-stg,5.0V) 0.49 uW/MHz/gate
D256_WIDE (31-stg,5.0V) 1.01 uW/MHz/gate

COMMENTS: SUBMICRON

☐ T6AU SPICE BSIM3 VERSION 3.1 PARAMETERS

SPICE 3f5 Level 8, Star-HSPICE Level 49, UTMOST Level 8

* DATE: Jan 11/07
* LOT: T6AU WAF: 7101
* Temperature_parameters=Default

.MODEL CMOSN NMOS (LEVEL = 49)
+VERSION = 3.1
+XJ = 1.5E-7
+K1 = 0.8976376
+K3B = -8.2369696
+DVTOW = 0
+DVT0 = 2.7123969
+U0 = 451.2322004
+UC = 1.22401E-11
+AGS = 0.130484
+KETA = -3.043349E-3
+RDSW = 1.367055E3
+WR = 1
+XL = 1E-7
+DWB = 3.676235E-8
+CIT = 0
+CDSCB = 0
+DSUB = 0.0764123
+PDIBLC2 = 2.366707E-3
+PSCBE1 = 6.611774E8
+DELTA = 0.01

CDSC = 2.4E-4
CDSCD = 0
ETA0 = 2.342963E-3
ETAB = -1.5324E-4
PCLM = 2.5941582
PDIBLC1 = 0.8187825
PDIBLCB = -0.0431505
DROUT = 0.9919348
PSCEB = 3.238266E-4
RSH = 83.5
MOBMOD = 1
+PRT = 0 UTE = -1.5 KT1 = -0.11
+KT1L = 0 KT2 = 0.022 UA1 = 4.31E-9
+UB1 = -7.61E-18 UC1 = -5.6E-11 AT = 3.3E4
+WL = 0 WLN = 1 WW = 0
+WWN = 1 WWL = 0 LL = 0
+LLN = 1 LW = 0 LWN = 1
+LWL = 0 CAPMOD = 2 XPART = 0.5
+CGDO = 2.32E-10 CGSO = 2.32E-10 CGBO = 1E-9
+CJ = 4.282017E-4 PB = 0.9317787 MJ = 0.4495867
+CJSW = 3.034055E-10 PBSW = 0.8 MJSW = 0.1713852
+CJSWG = 1.64E-10 PBSWG = 0.8 MJSWG = 0.1713852
+CF = 0 PVTN = 0.0520855 PRTSW = 112.8875816
+PK2 = -0.0289036 WKETA = -0.0237483 LKETA = 1.728324E-3

* .MODEL CMOSP PMOS (LEVEL = 49
+VERSION = 3.1 TNOM = 27 TOX = 1.42E-8
+XJ = 1.5E-7 NCH = 1.7E17 VTH0 = -0.9232867
+K1 = 0.5464347 K2 = 8.119291E-3 K3 = 5.1623206
+K3B = -0.8373484 W0 = 1.309458E-8 NLX = 5.772187E-8
+DVTOW = 0 DVT1W = 0 DVT2W = 0
+DVT0 = 2.0973823 DVT1 = 0.5356454 DVT2 = -0.1185455
+U0 = 220.5922586 UA = 3.144939E-9 UB = 1E-21
+UC = -6.19354E-11 VSAT = 1.176415E5 A0 = 0.8441929
+AGS = 0.1447245 B0 = 1.149181E-6 B1 = 5E-6
+KETAL = -1.093365E-3 A1 = 3.467482E-4 A2 = 0.4667486
+RDSW = 3E3 PRWG = -0.0418549 PRWB = -0.0212201
+W = 1 WINT = 3.007497E-7 LINT = 1.040439E-7
+XL = 1E-7 WX = 0 DWG = -2.133809E-8
+DBW = 1.706031E-8 VOFF = -0.0801591 NFACTOR = 0.9468597
+CI = 0 CDSC = 2.4E-4 CDSCD = 0
+CDSCB = 0 ETA0 = 0.4060383 ETAB = -0.0633609
+DSUB = 1 PCLM = 2.2703293 PDIBLC1 = 0.0279014
+PDIBLC2 = 3.201161E-3 PDIBLCB = -0.057478 DRDOUT = 0.1718548
+SCBE1 = 4.876974E9 PSCBE2 = 5E-10 PVAG = 0
+DELTA = 0.01 RSH = 105.3 MOBMOD = 1
+PRT = 0 UTE = -1.5 KT1 = -0.11
+KT1L = 0 KT2 = 0.022 UA1 = 4.31E-9
+UB1 = -7.61E-18 UC1 = -5.6E-11 AT = 3.3E4
+WL = 0 WLN = 1 WW = 0
+WWN = 1 WWL = 0 LL = 0
+LLN = 1 LW = 0 LWN = 1
+LWL = 0 CAPMOD = 2 XPART = 0.5
+CGDO = 3.12E-10 CGSO = 3.12E-10 CGBO = 1E-9
+CJ = 7.254264E-4 PB = 0.9682229 MJ = 0.4969013
+CJSW = 2.496599E-10 PBSW = 0.99 MJSW = 0.386204
+CJSWG = 6.4E-11 PBSWG = 0.99 MJSWG = 0.386204
+CF = 0 PVTH0 = 5.98016E-3 PRDSW = 14.8598424
+PK2 = 3.73981E-3 WKETA = 7.286716E-4 LKETA = -4.768569E-3
*
Consider Resistance and Capacitance Parameters

PROCESS PARAMETERS
<table>
<thead>
<tr>
<th></th>
<th>N+</th>
<th>P+</th>
<th>POLY</th>
<th>POLY2 HR</th>
<th>POLY2</th>
<th>M1</th>
<th>M2</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheet Resistance</td>
<td>83.5</td>
<td>105.3</td>
<td>23.5</td>
<td>999</td>
<td>44.2</td>
<td>0.09</td>
<td>0.10</td>
<td>ohms/sq</td>
</tr>
<tr>
<td>Contact Resistance</td>
<td>64.9</td>
<td>149.7</td>
<td>17.3</td>
<td></td>
<td>29.2</td>
<td></td>
<td>0.97</td>
<td>ohms</td>
</tr>
<tr>
<td>Gate Oxide Thickness</td>
<td>142</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>angstrom</td>
</tr>
</tbody>
</table>

PROCESS PARAMETERS
<table>
<thead>
<tr>
<th></th>
<th>M3</th>
<th>N\PLY</th>
<th>N_W</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheet Resistance</td>
<td>0.05</td>
<td>824</td>
<td>816</td>
<td>ohms/sq</td>
</tr>
<tr>
<td>Contact Resistance</td>
<td>0.79</td>
<td></td>
<td></td>
<td>ohms</td>
</tr>
</tbody>
</table>

COMMENTS: N_POLY is N-well under polysilicon.

CAPACITANCE PARAMETERS
<table>
<thead>
<tr>
<th></th>
<th>N+</th>
<th>P+</th>
<th>POLY</th>
<th>POLY2</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>N_W</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area (substrate)</td>
<td>425</td>
<td>731</td>
<td>84</td>
<td></td>
<td>27</td>
<td>12</td>
<td>7</td>
<td>37</td>
<td>aF/um^2</td>
</tr>
<tr>
<td>Area (N+active)</td>
<td></td>
<td></td>
<td></td>
<td>2434</td>
<td>35</td>
<td>16</td>
<td>11</td>
<td></td>
<td>aF/um^2</td>
</tr>
<tr>
<td>Area (P+active)</td>
<td></td>
<td></td>
<td></td>
<td>2335</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>aF/um^2</td>
</tr>
<tr>
<td>Area (poly)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>938</td>
<td>56</td>
<td>15</td>
<td>9</td>
<td>aF/um^2</td>
</tr>
<tr>
<td>Area (poly2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td>aF/um^2</td>
</tr>
<tr>
<td>Area (metal1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31</td>
<td>13</td>
<td></td>
<td></td>
<td>aF/um^2</td>
</tr>
<tr>
<td>Area (metal2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td>aF/um^2</td>
</tr>
<tr>
<td>Fringe (substrate)</td>
<td>344</td>
<td>238</td>
<td></td>
<td></td>
<td>49</td>
<td>33</td>
<td>23</td>
<td></td>
<td>aF/um</td>
</tr>
<tr>
<td>Fringe (poly)</td>
<td></td>
<td></td>
<td></td>
<td>59</td>
<td>38</td>
<td>28</td>
<td></td>
<td></td>
<td>aF/um</td>
</tr>
<tr>
<td>Fringe (metal1)</td>
<td></td>
<td></td>
<td></td>
<td>51</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td>aF/um</td>
</tr>
<tr>
<td>Fringe (metal2)</td>
<td></td>
<td></td>
<td></td>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>aF/um</td>
</tr>
<tr>
<td>Overlap (N+active)</td>
<td>232</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>aF/um</td>
</tr>
<tr>
<td>Overlap (P+active)</td>
<td>312</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>aF/um</td>
</tr>
</tbody>
</table>
Example

Determine the resistance and capacitance of a Poly interconnect that is 0.6\(\mu\) wide and 800\(\mu\) long and compare that with the same interconnect if M\(_1\) were used.

\[
n_{sq} = \frac{800\mu}{0.6\mu} = 1333
\]

\[
A = 0.6\mu \times 800\mu = 480\mu^2
\]

\[
R_{POLY} = n_{SQ} R_{SH} = 23.5 \times 1333 = 31.3\, \text{K}\Omega
\]

\[
C_{P-SUB} = A \cdot C_{DPS} = 480\mu^2 \cdot 85\, \text{aF}\mu^2 = 40.8\, \text{fF}
\]
Example

Determine the resistance and capacitance of a Poly interconnect that is 0.6\(\mu \) wide and 800\(\mu \) long and compare that with the same interconnect if M\(_1\) were used.

\[
n_{sq} = \frac{800\mu}{0.6\mu} = 1333
\]

\[
A = 0.6\mu \cdot 800\mu = 480\mu^2
\]

\[
R_{M1} = n_{sq} R_{SH} = 0.09 \cdot 1333 = 120\Omega
\]

\[
C_{M1-SUB} = A \cdot C_{DM1S} = 480\mu^2 \cdot 27\text{aF}\mu^{-2} = 13.0\text{fF}
\]
End of Lecture 10
IC Fabrication Technology

- Crystal Preparation
- Masking
- Photolithographic Process
- Deposition
- Etching
- Diffusion
- Ion Implantation
- Oxidation
- Epitaxy
- Polysilicon
- Contacts, Interconnect and Metalization
- Planarization
Planarization

- Planarization used to keep surface planar during subsequent processing steps
 - Important for creating good quality layers in subsequent processing steps
 - Mechanically planarized
Generic Process Flow

Front End

1. Wafer Fabrication
2. Mask Fabrication
3. Epitaxy
4. Grow or Apply
5. Photoresist
6. Deposit or Implant
7. Etch
8. Strip
9. Planarization

Back End

10. Wafer Probe
11. Wafer Dicing
12. Die Attach
13. Wire Attach (bonding)
14. Package
15. Test
16. Ship
Front-End Process Flow

• Front-end processing steps analogous to a “recipe” for manufacturing an integrated circuit
• Recipes vary from one process to the next but the same basic steps are used throughout the industry
• Details of the recipe are generally considered proprietary
Back-End Process Flow

- Wafer Probe
- Wafer Dicing
- Die Attach
- Wire Attach (bonding)
- Package
- Test
- Ship
Wafer Dicing

Gang of slitting blades

Rotary stage indexer

Silicon wafer

X axis

Y axis

www.renishaw.com
Die Attach

1. Eutectic
2. Pre-form
3. Conductive Epoxy
Electrical Connections (Bonding)

- Wire Bonding
- Bump Bonding
Wire Bonding

Wire – gold or aluminum
25 μ in diameter
Wire Bonding

Excellent Animation showing process at:

http://www.kns.com/_Flash/CAP_BONDING_CYCLE.swf
Wire Bonding

Ball Bond

Wedge Bond
Ball Bonding Steps
Ball Bonding Tip

Approx 25µ
Wire Bonding

Ball Bond

Termination Bond

Ball Bond Photograph
Bump Bonding
Packaging

1. Many variants in packages now available
2. Considerable development ongoing on developing packaging technology
3. Cost can vary from few cents to tens of dollars
4. Must minimize product loss after packaged
5. Choice of package for a product is serious business
6. Designer invariably needs to know packaging plans and package models
Packaging

Insertion type:
- SIP
- PGA

Surface mounting type:
- SOP
- TSOP
- QFP
- SOJ
- QFJ
- QFN
- TCP
- BGA
Packaging
Basic Devices

- **Standard CMOS Process**
 - MOS Transistors
 - n-channel
 - p-channel
 - Capacitors
 - Resistors
 - Diodes
 - BJT (in some processes)
 - npn
 - pnp

- **Niche Devices**
 - Photodetectors
 - MESFET
 - Schottky Diode *(not Shockley)*
 - MEM Devices
 -

Primary Consideration in This Course
Basic Semiconductor Processes

MOS (Metal Oxide Semiconductor)

1. NMOS
 - n-ch
2. PMOS
 - p-ch
3. CMOS
 - n-ch & p-ch
 - Basic Device: MOSFET
 - Niche Device: MESFET
 - Other Devices: Diode
 - BJT
 - Resistors
 - Capacitors
 - Schottky Diode
Basic Semiconductor Processes

Bipolar

1. T²L
2. ECL
3. I²L
4. Linear ICs
 – Basic Device: BJT (Bipolar Junction Transistor)
 – Niche Devices: HBJT (Heterojunction Bipolar Transistor)
 – Other Devices: Diode
 Resistor
 Capacitor
 Schottky Diode
 JFET (Junction Field Effect Transistor)
Basic Semiconductor Processes

Other Processes

- Thin and Thick Film Processes
 - Basic Device: Resistor

- BiMOS or BiCMOS
 - Combines both MOS & Bipolar Processes
 - Basic Devices: MOSFET & BJT

- SiGe
 - BJT with HBT implementation

- SiGe / MOS
 - Combines HBT & MOSFET technology

- SOI / SOS (Silicon on Insulator / Silicon on Sapphire)

- Twin-Well & Twin Tub CMOS
 - Very similar to basic CMOS but more optimal transistor char.
Devices in Semiconductor Processes

- **Standard CMOS Process**
 - MOS Transistors
 - n-channel
 - p-channel
 - Capacitors
 - Resistors
 - Diodes
 - BJT (decent in some processes)
 - npn
 - pnp
 - JFET (in some processes)
 - n-channel
 - p-channel

- **Standard Bipolar Process**
 - BJT
 - npn
 - pnp
 - JFET
 - n-channel
 - p-channel
 - Diodes
 - Resistors
 - Capacitors

- **Niche Devices**
 - Photodetectors (photodiodes, phototransistors, photoresistors)
 - MESFET
 - HBT
 - Schottky Diode (not Shockley)
 - MEM Devices
 -