EE 330 Lecture 10

IC Fabrication Technology Part III

- Resistance and Capacitance in Interconnects
- Back-end Processes

Devices in Semiconductor Processes

Review from Last Time

- Contacts usually of a fixed size
 - All etches reach bottom at about the same time
 - Multiple contacts widely used
 - Contacts not allowed to Poly on thin oxide in most processes
 - Dog-bone often needed for minimum-length devices

Review from Last Time

Metalization

- Aluminum widely used for interconnect
- Copper finding some applications
- Must not exceed maximum current density – around 1ma/u
- Ohmic Drop must be managed
- Parasitic Capacitances must be managed
- Interconnects from high to low level metals require connections to each level of metal
- Stacked vias permissible in some processes

Interconnect Layers May Vary in Thickness or Be Mostly Uniform

FIG 4.30 Interconnect geometry

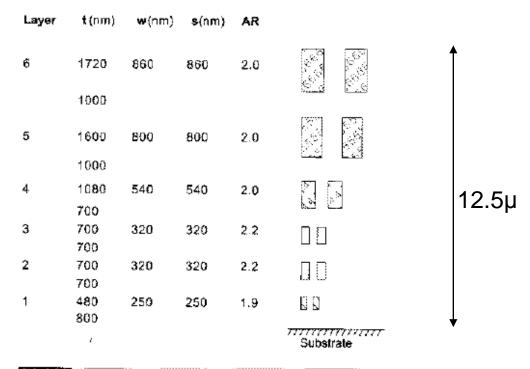
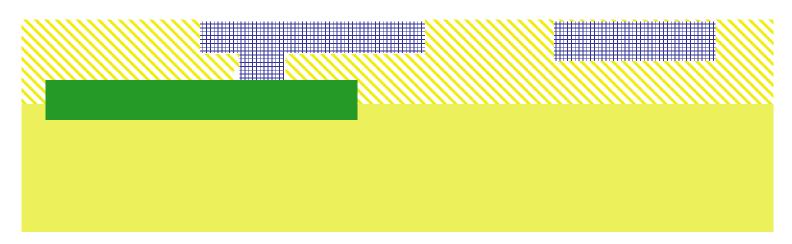



FIG 4.31 Layer stack for 6-metal Intel 180 nm process

Review from Last Time Patterning of Copper

Both Damascene Processes Realize Same Structure Damascene Process

Two Dielectric Deposition Steps Two CMP Steps Two Metal Deposition Steps Two Dielectric Etches W-Plug

Dual-Damascene Process

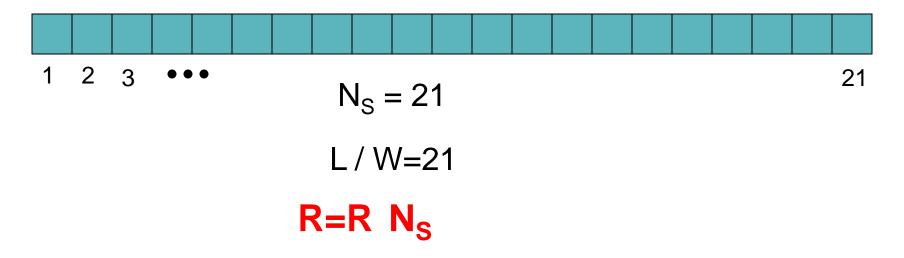
One Dielectric Deposition Steps One CMP Steps One Metal Deposition Steps Two Dielectric Etches Via formed with metal step **Review from Last Time**

Interconnects

- Metal is preferred interconnect
 Because conductivity is high
- Parasitic capacitances and resistances of concern in all interconnects
- Polysilicon used for short interconnects
 Silicided to reduce resistance
 - Unsilicided when used as resistors
- Diffusion used for short interconnects
 - Parasitic capacitances are high

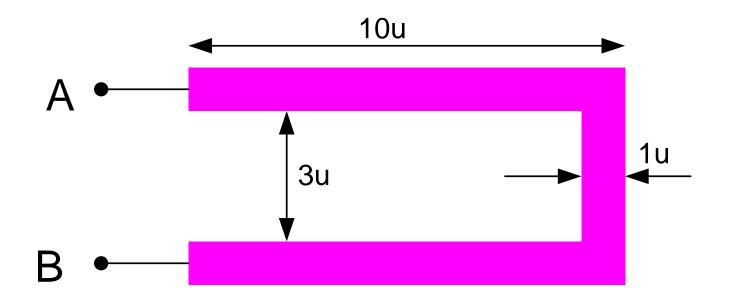
Review from Last Time

Interconnects

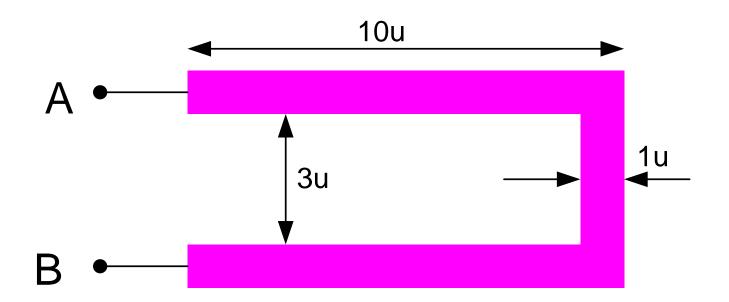

- Metal is preferred interconnect
 Because conductivity is high
- Parasitic capacitances and resistances of concern in all interconnects
- Polysilicon used for short interconnects
 Silicided to reduce resistance
 - Unsilicided when used as resistors
- Diffusion used for short interconnects
 - Parasitic capacitances are high

Review from Last Time Resistance in Interconnects

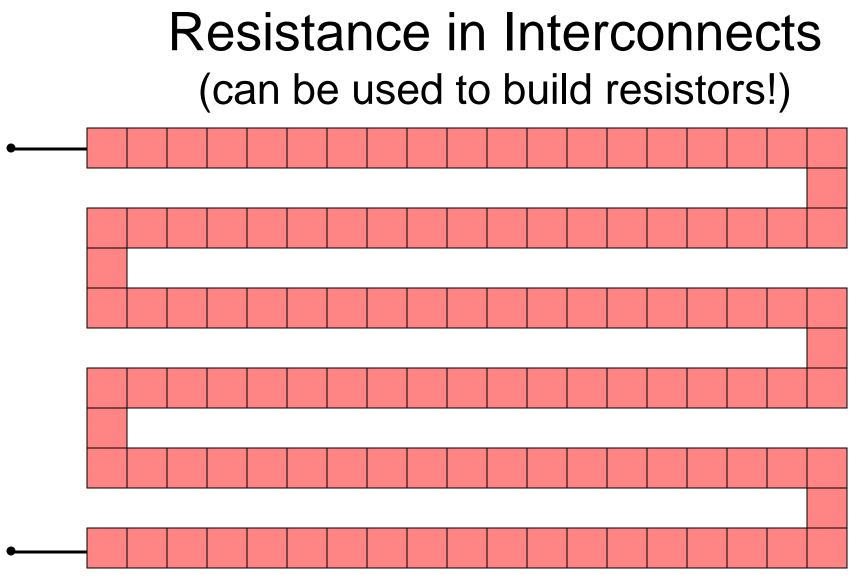
IW


R=R [L/W]

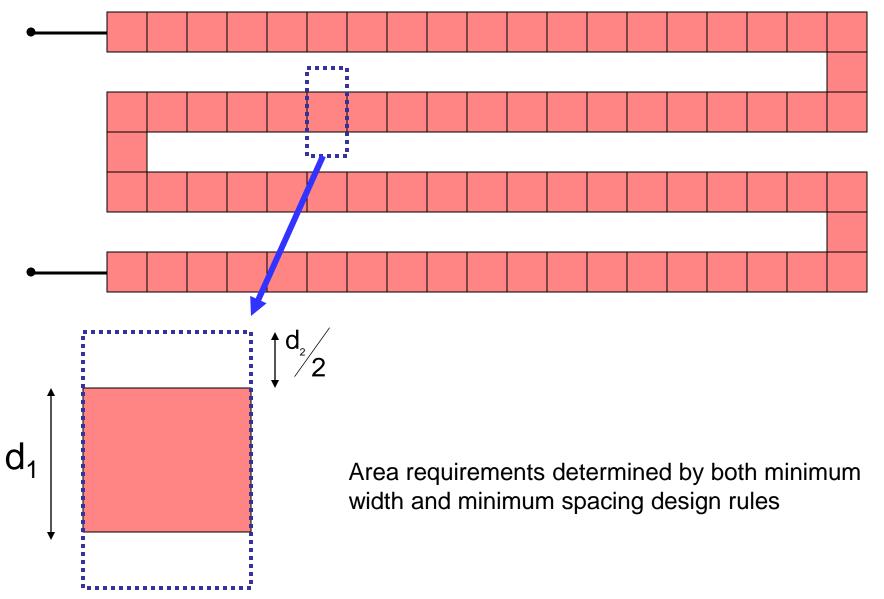
The "Number of Squares" approach to resistance determination in thin films



Example:


The layout of a film resistor with electrodes A and B is shown. If the sheet resistance of the film is 40 $\Omega/$, determine the resistance between nodes A and B.

Solution

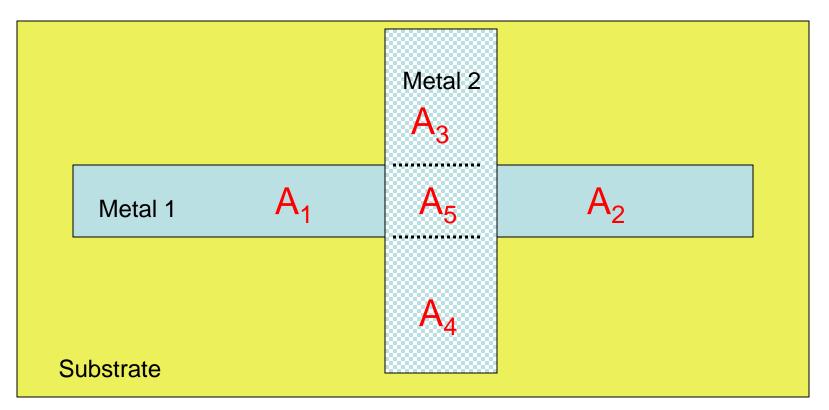


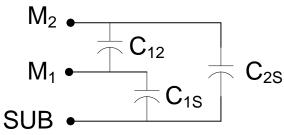
$$N_{s} = 9 + 9 + 3 + 2(.55) = 22.1$$

 $R_{AB} = R N_{s} = 40 \times 22.1 = 884\Omega$

- Serpentine often used when large resistance <u>required</u>
- Polysilicon or diffusion often used for resistor creation
- Effective at managing the aspect ratio of large resistors
- May include hundreds or even thousands of squares

Resistance in Interconnects (can be used to build resistors!)


Capacitance in Interconnects

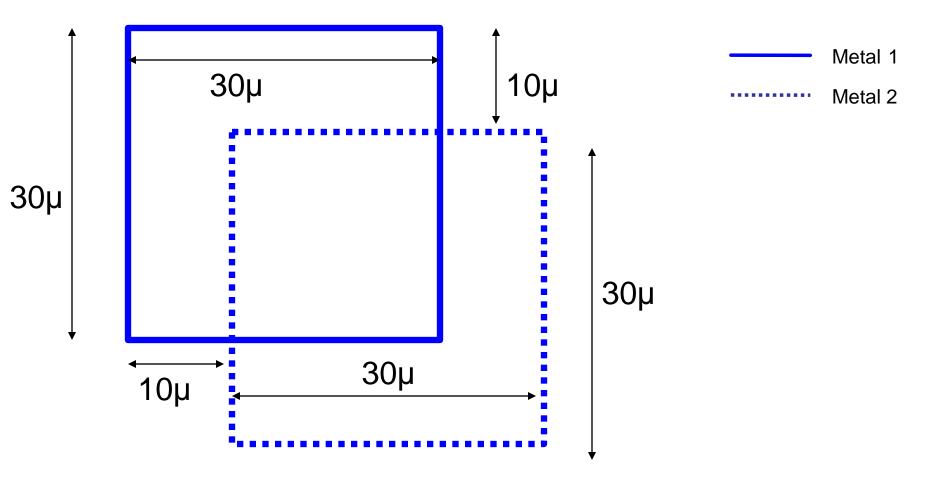


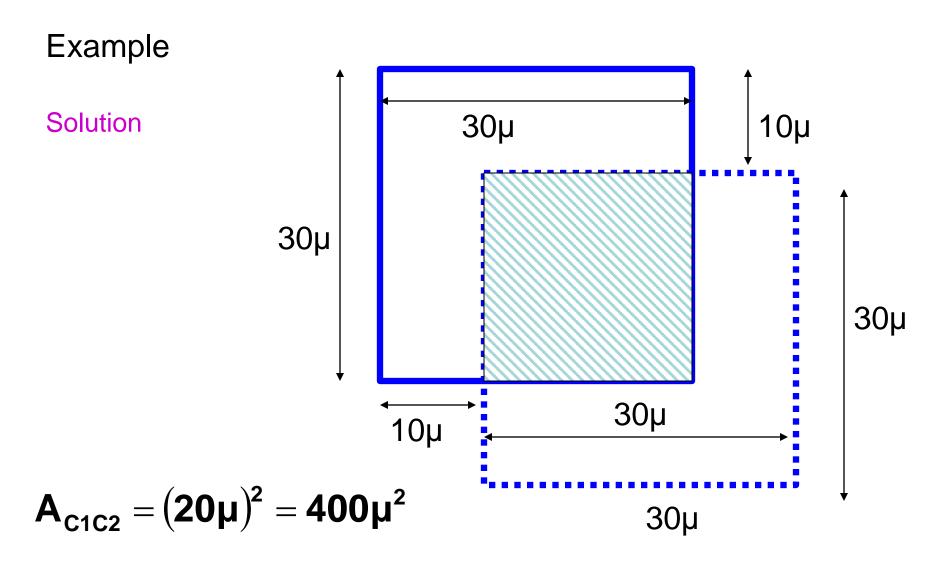
$$C = C_D A$$

 C_D is the capacitance density and A is the area of the overlap

Capacitance in Interconnects

Equivalent Circuit


$$C_{12} = CD_{12}A_5$$


$$C_{1S} = CD_{1S}(A_1 + A_2 + A_5)$$

$$C_{2S} = CD_{2S}(A_3 + A_4)$$

Example

Two metal layers, Metal 1 and Metal 2, are shown. Both are above field oxide. Determine the capacitance between Metal 1 and Metal 2. Assume the process has capacitance densities from M_1 to substrate of .05fF/u², from M_1 to M_2 of .07fF/u² and from M_2 to substrate of .025fF/u².

The capacitance density from M_1 to M_2 is .07fF/u²

$$C_{12} = A_{C1C2} \bullet C_{D12} = 400 \mu^2 \bullet 0.07 \text{fF}/\mu^2 = 28 \text{fF}$$

Capacitance and Resistance in Interconnects

 See MOSIS WEB site for process parameters that characterize parasitic resistances and capacitances

www.mosis.org

MOSIS WAFER ACCEPTANCE TESTS

RUN: T6AU TECHNOLOGY: SCN05 VENDOR: AMIS

FEATURE SIZE: 0.5 microns

Run type: SKD

INTRODUCTION: This report contains the lot average results obtained by MOSIS from measurements of MOSIS test structures on each wafer of this fabrication lot. SPICE parameters obtained from similar measurements on a selected wafer are also attached.

COMMENTS: American Microsystems, Inc. C5

TRANSISTOR	PARAMETERS	W/L	N-CHANNEL	P-CHANNEL	UNITS
MINIMUM		3.0/0.6			
Vth			0.79	-0.92	volts
SHORT		20.0/0.6			
Idss			446	-239	uA/um
Vth			0.68	-0.90	volts
Vpt			10.0	-10.0	volts
WIDE		20.0/0.6			
Ids0			< 2.5	< 2.5	pA/um
LARGE		50/50			
Vth			0.68	-0.95	volts
Vjbkd			10.9	-11.6	volts
Ijlk			<50.0	<50.0	pA
Gamma			0.48	0.58	V^0.5
K' (Uo*Cox	c/2)		56.4	-18.2	uA/V^2
Low-field	Mobility		463.87	149.69	cm^2/V*s

COMMENTS: Poly bias varies with design technology. To account for mask bias use the appropriate value for the parameter XL in your SPICE model card.

Design Technology	XL (um)	XW (um)

	SCMOS_SUBM (lambda=0.30) SCMOS (lambda=0.35)					0.10 0.00		.00
FOX TRANSISTORS Vth	GA Po	TE ly	N+ACTI >15.			ITS		
PROCESS PARAMETERS Sheet Resistance Contact Resistance Gate Oxide Thickness	N+ 83.5 64.9 142	P+ 105.3 149.7	POLY 23.5 17.3	PLY2_HR 999	POLY2 44.2 29.2	M1 0.09	M2 0.10 0.97	UNITS ohms/sq ohms angstrom
PROCESS PARAMETERS Sheet Resistance Contact Resistance		M3 0.05 0.79	N\PLY 824	N_W 816	oh	IITS ms/sq ms		

COMMENTS: N\POLY is N-well under polysilicon.

CAPACITANCE PARAMETERS	N+	P+	POLY	POLY2	M1	M2	MЗ	N W	UNITS
Area (substrate)	425	731	84		27	12	7	37	aF/um^2
Area (N+active)			2434		35	16	11		aF/um^2
Area (P+active)			2335						aF/um^2
Area (poly)				938	56	15	9		aF/um^2
Area (poly2)					49				aF/um^2
Area (metal1)						31	13		aF/um^2
Area (metal2)							35		aF/um^2
Fringe (substrate)	344	238			49	33	23		aF/um
Fringe (poly)					59	38	28		aF/um
Fringe (metal1)						51	34		aF/um
Fringe (metal2)							52		aF/um
Overlap (N+active)			232						aF/um
Overlap (P+active)			312						aF/um

CIRCUIT PARAMETERS			UNITS
Inverters	K		
Vinv	1.0	2.02	volts
Vinv	1.5	2.28	volts
Vol (100 uA)	2.0	0.13	volts

Voh (100 uA)	2.0	4.85	volts
Vinv	2.0	2.46	volts
Gain	2.0	-19.72	
Ring Oscillator Freq.			
DIV256 (31-stg,5.0V)		95.31	MHz
D256_WIDE (31-stg,5.0V)		147.94	MHz
Ring Oscillator Power			
DIV256 (31-stg,5.0V)			uW/MHz/gate
D256_WIDE (31-stg,5.0V)		1.01	uW/MHz/gate

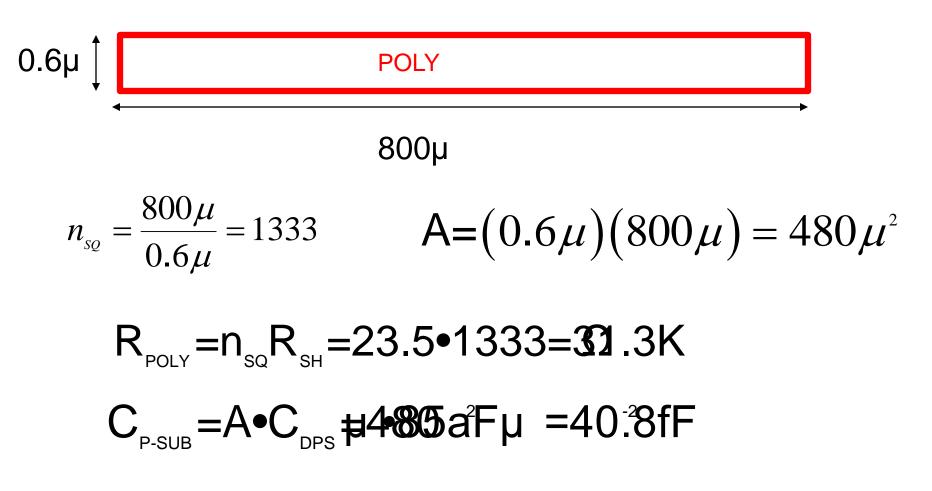
COMMENTS: SUBMICRON

□ T6AU SPICE BSIM3 VERSION 3.1 PARAMETERS

SPICE 3f5 Level 8, Star-HSPICE Level 49, UTMOST Level 8

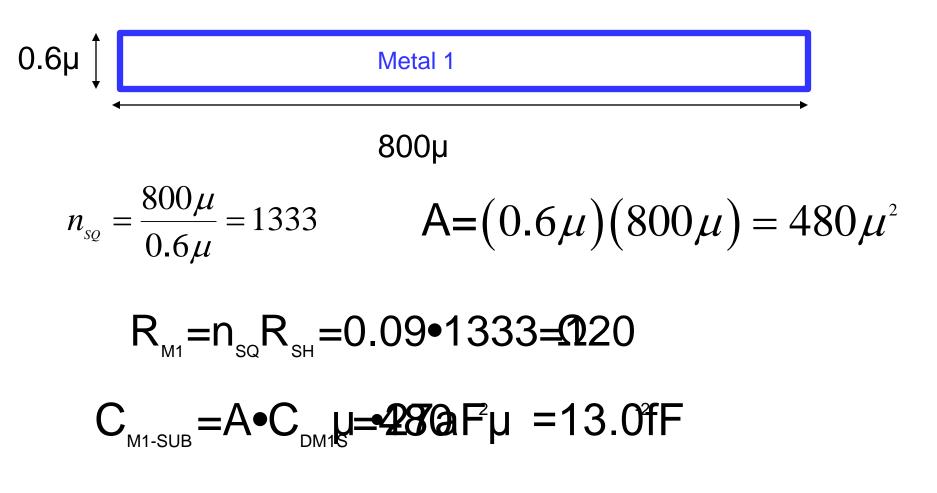
* DATE: Jan 11/07			
* LOT: T6AU	WAF:	7101	
 Temperature parameters 	=Default		
.MODEL CMOSN NMOS (LEVEL = 49
+VERSION = 3.1	TNOM	= 27	TOX = 1.42E-8
+XJ = 1.5E-7	NCH	= 1.7E17	VTH0 = 0.629035
+K1 = 0.8976376	K2	= -0.09255	K3 = 24.0984767
+K3B = -8.2369696	WO	= 1.041146E-8	NLX = 1E-9
+DVTOW = 0	DVT1W	= 0	DVT2W = 0
+DVT0 = 2.7123969	DVT1	= 0.4232931	DVT2 = -0.1403765
+U0 = 451.2322004	UA	= 3.091785E-13	UB = 1.702517E-18
+UC = 1.22401E-11	VSAT	= 1.715884E5	A0 = 0.6580918
+AGS = 0.130484	BO	= 2.446405E-6	B1 = 5E-6
+KETA = -3.043349E-3	A1	= 8.18159E-7	A2 = 0.3363058
+RDSW = 1.367055E3	PRWG	= 0.0328586	PRWB = 0.0104806
+WR = 1	WINT	= 2.443677E-7	LINT = 6.999776E-8
+XL = 1E-7	XW	= 0	DWG = -1.256454E-8
+DWB = 3.676235E-8	VOFF	= -1.493503E-4	NFACTOR = 1.0354201
+CIT = 0	CDSC	= 2.4E-4	CDSCD = 0
+CDSCB = 0	ETA0	= 2.342963E-3	ETAB = -1.5324E-4
+DSUB = 0.0764123	PCLM	= 2.5941582	PDIBLC1 = 0.8187825
+PDIBLC2 = 2.366707E-3	PDIBLCB	= -0.0431505	DROUT = 0.9919348
+PSCBE1 = 6.611774E8	PSCBE2	= 3.238266E-4	PVAG = 0
+DELTA = 0.01	RSH	= 83.5	MOBMOD = 1

+PRT	= 0	UTE	= -1.5	KT1	= -0.11
+KT1L	= 0	KT2	= 0.022	UA1	= 4.31E-9
+UB1	= -7.61E-18	UC1	= -5.6E-11	AT	= 3.3E4
+WL	= 0	WLN	= 1	WW	= 0
+WWN	= 1	WWL	= 0	LL	= 0
+LLN	= 1	LW	= 0	LWN	= 1
+LWL	= 0	CAPMOD	= 2	XPART	= 0.5
+CGDO	= 0 = 2.32E-10	CGSO	= 2.32E-10	CGBO	= 1E-9
+CJ	= 4.282017E-4	PB	= 0.9317787	MJ	= 0.4495867
+CJSW	= 4.282017E-4 = 3.034055E-10	PBSW	= 0.9317787	MJSW	= 0.1713852
			= 0.8		
+CJSWG	= 1.64E-10 = 0	PBSWG		MJSWG	= 0.1713852
+CF	-	PVTHO	= 0.0520855	PRDSW	= 112.8875816
+PK2 *	= -0.0289036	WKETA	= -0.0237483	LKETA	= 1.728324E-3
	NOCE PROC (10
	MOSP PMOS (mich	07	LEVEL	= 49
+VERSION		TNOM	= 27	TOX	= 1.42E-8
+XJ	= 1.5E-7	NCH	= 1.7E17	VTHO	= -0.9232867
+K1	= 0.5464347	K2	= 8.119291E-3	K3	= 5.1623206
+K3B	= -0.8373484	WO	= 1.30945E-8	NLX	= 5.772187E-8
+DVTOW	= 0	DVT1W	= 0	DVT2W	= 0
+DVT0	= 2.0973823	DVT1	= 0.5356454	DVT2	= -0.1185455
+00	= 220.5922586	UA	= 3.144939E-9	UB	= 1E-21
+0C	= -6.19354E-11	VSAT	= 1.176415E5	A0	= 0.8441929
+AGS	= 0.1447245	BO	= 1.149181E-6	B1	= 5E-6
+KETA	= -1.093365E-3	A1	= 3.467482E-4	A2	= 0.4667486
+RD.SW	= 3E3	PRWG	= -0.0418549	PRWB	= -0.0212201
+WR	= 1	WINT	= 3.007497E-7	LINT	= 1.040439E-7
+XL	= 1E-7	XW	= 0	DWG	= -2.133809E-8
+DWB	= 1.706031E-8	VOFF	= -0.0801591	NFACTOR	= 0.9468597
+CIT	= 0	CDSC	= 2.4E-4	CDSCD	= 0
+CDSCB	= 0	ETAO	= 0.4060383	ETAB	= -0.0633609
+DSUB	= 1	PCLM	= 2.2703293	PDIBLC1	= 0.0279014
+PDIBLC2	2 = 3.201161E-3	PDIBLCB	= -0.057478	DROUT	= 0.1718548
+PSCBE1	= 4.876974E9	PSCBE2	= 5E-10	PVAG	= 0
+DELTA	= 0.01	RSH	= 105.3	MOBMOD	= 1
+PRT	= 0	UTE	= -1.5	KT1	= -0.11
+KT1L	= 0	KT2	= 0.022	UA1	= 4.31E-9
+0B1	= -7.61E-18	UC1	= -5.6E-11	AT	= 3.3E4
+WL	= 0	WLN	= 1	WW	= 0
+WWN	= 1	WWL	= 0	LL	= 0
+LLN	= 1	LW	= 0	LWN	= 1
+LWL	= 0	CAPMOD	= 2	XPART	= 0.5
+CGDO	= 3.12E - 10	CGSO	= 3.12E - 10	CGBO	= 1E-9


)

+CJ	= 7.254264E-4	PB	= 0.9682229	MJ	= 0.4969013
+CJSW	= 2.496599E-10	PBSW	= 0.99	MJSW	= 0.386204
+CJSWG	= 6.4E - 11	PBSWG	= 0.99	MJSWG	= 0.386204
+CF	= 0	PVTHO	= 5.98016E-3	PRDSW	= 14.8598424
+PK2	= 3.73981E-3	WKETA	= 7.286716E-4	LKETA	= -4.768569E-3
*					

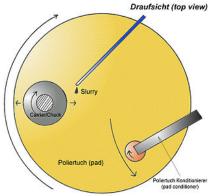
)

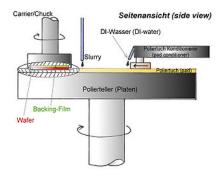

Example

Determine the resistance and capacitance of a Poly interconnect that is 0.6u wide and 800u long and compare that with the same interconnect if M_1 were used.

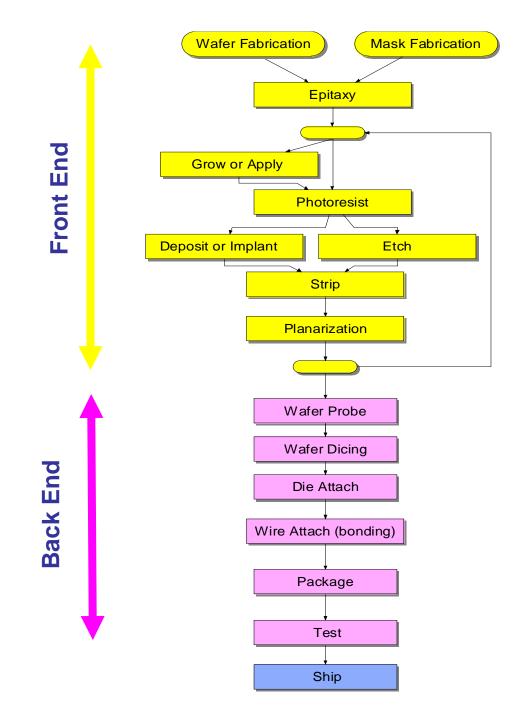
Example

Determine the resistance and capacitance of a Poly interconnect that is 0.6u wide and 800u long and compare that with the same interconnect if M_1 were used.

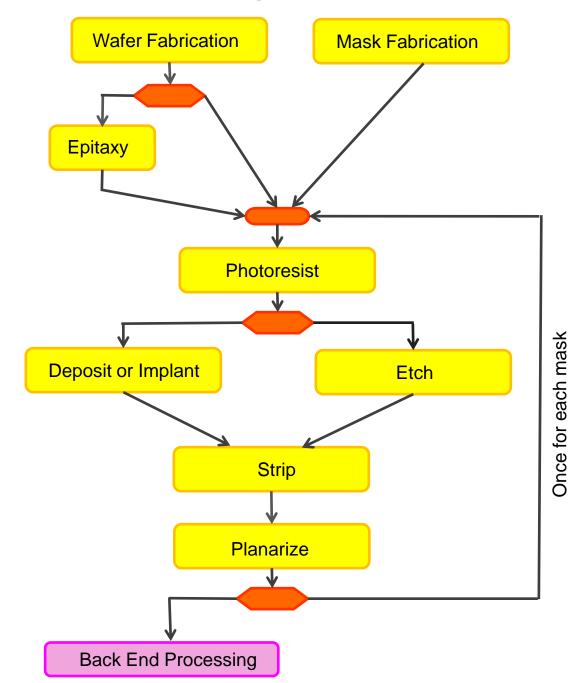



IC Fabrication Technology

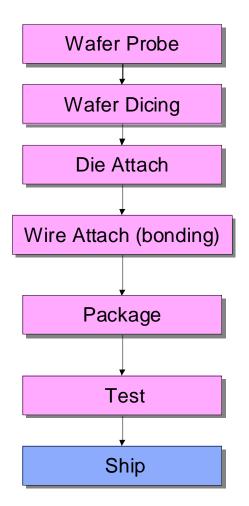
- Crystal Preparation
- Masking
- Photolithographic Process
- Deposition
- Etching
- Diffusion
- Ion Implantation
- Oxidation
- Epitaxy
- Polysilicon
- Contacts, Interconnect and Metalization
- Planarization

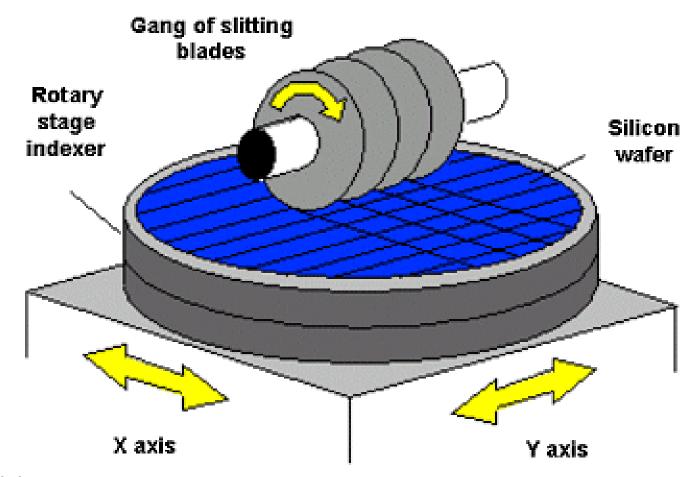

Planarization

- Planarization used to keep surface planar during subsequent processing steps
 - Important for creating good quality layers in subsequent processing steps
 - Mechanically planarized



Generic Process Flow


Front End Process Integration for Fabrication of ICs

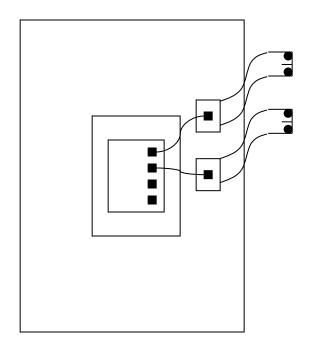

Front-End Process Flow

- Front-end processing steps analogous to a "recipe" for manufacturing an integrated circuit
- Recipes vary from one process to the next but the same basic steps are used throughout the industry
- Details of the recipe are generally considered proprietary

Back-End Process Flow

Wafer Dicing

www.renishaw.com

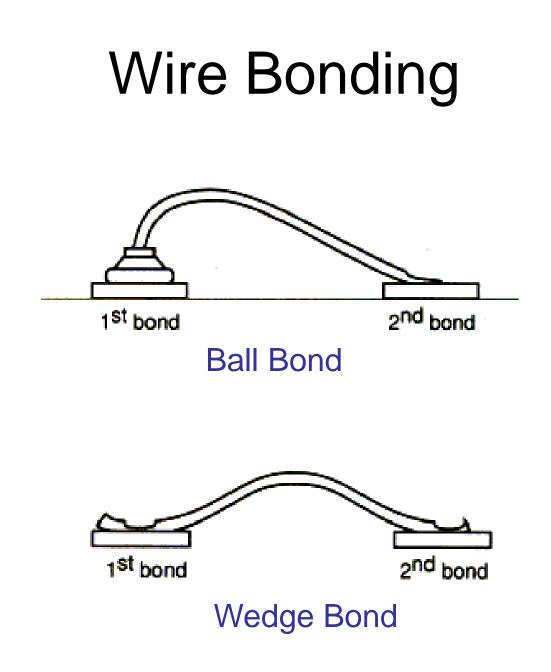

Die Attach

- 1. Eutectic
- 2. Pre-form
- 3. Conductive Epoxy

Electrical Connections (Bonding)

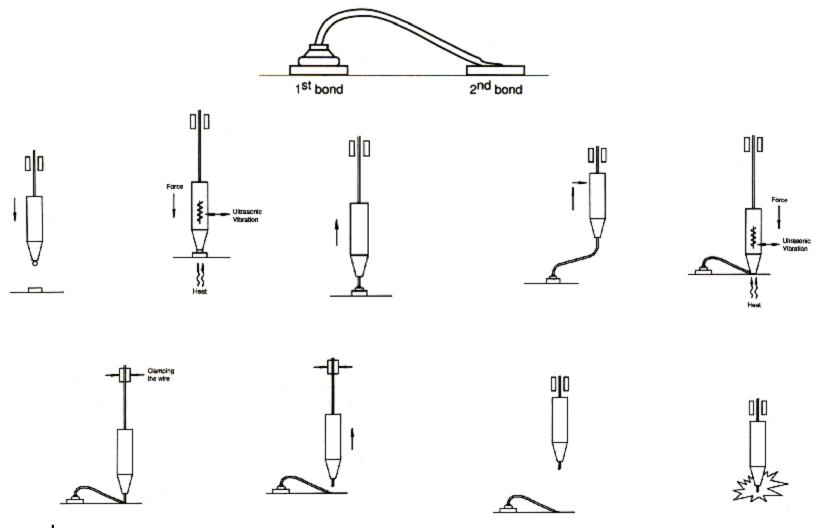
- Wire Bonding
- Bump Bonding

Wire Bonding

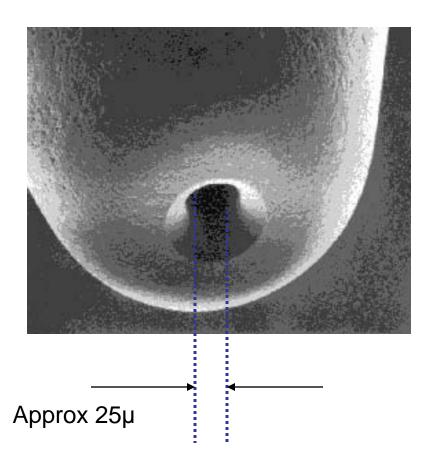


Wire – gold or aluminum 25μ in diameter

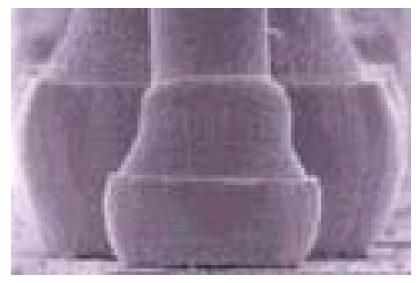
Wire Bonding


Excellent Annimation showing process at :

http://www.kns.com/_Flash/CAP_BONDING_CYCLE.swf

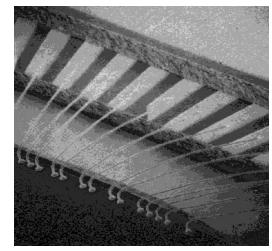

www.kns.com

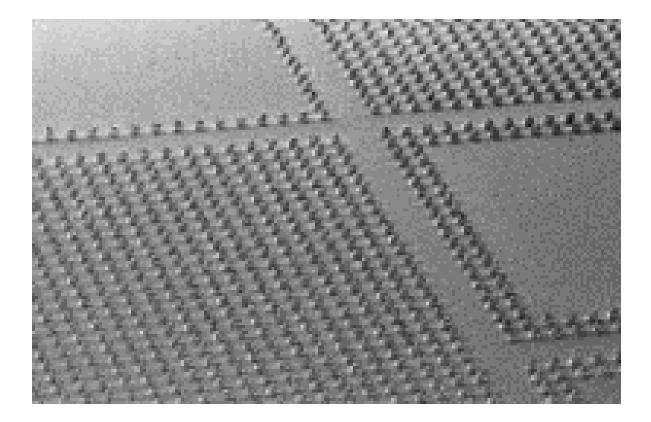
Ball Bonding Steps



www.kns.com

Ball Bonding Tip

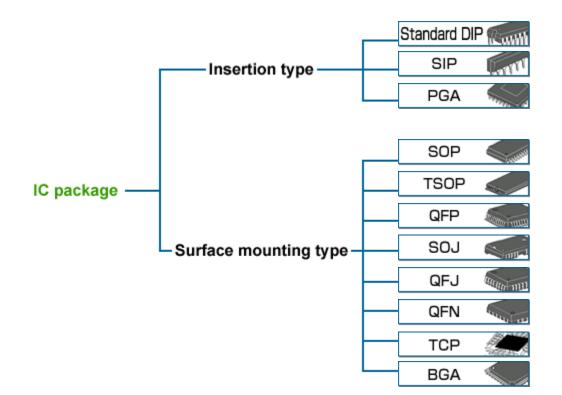

Wire Bonding


Ball Bond

Termination Bond

Ball Bond Photograph

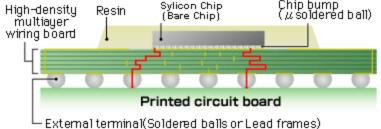
Bump Bonding



www.secap.org

Packaging

- 1. Many variants in packages now available
- 2. Considerable development ongoing on developing packaging technology
- 3. Cost can vary from few cents to tens of dollars
- 4. Must minimize product loss after packaged
- 5. Choice of package for a product is serious business
- 6. Designer invariably needs to know packaging plans and package models


Packaging

www.necel.com

Packaging

www.necel.com

Pin Pitch Varies with Package Technology

All measurements are nominal in [mm].

Name	Pin pitch	Size	Height
DIP or DIL	2.54		
SOIC-16	1.27	3.9 x 10	1.72
SSOP	0.635		
TSSOP54-II	0.8	12.7 x 22.22	~1
PLCC44	1.27		
PQ208 ^[1]	0.50	28 x 28	3.4
TQFP64	0.40	7 x 7	1.0
TQFP144 ^[2]	0.50	20 x 20	1.0
128PQFP	0.50	23.23 x 14.0	3.15

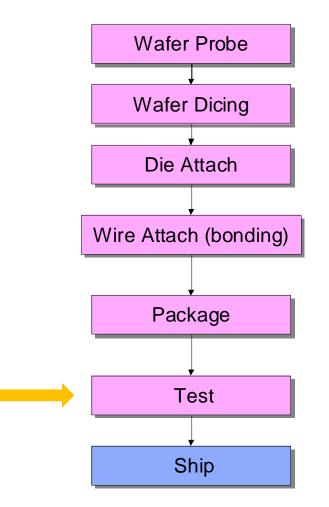
http://www.electroiq.com/index/display/packaging-articledisplay/234467/articles/advanced-packaging/volume-14/issue-8/features/the-back-end-process/materials-andmethods-for-ic-package-assemblies.htm

From Wikipedia, Sept 20, 2010

http://en.wikipedia.org/wiki/List_of_chip_carriers

Many standard packages available today:

http://www.interfacebus.com/Design_Pack_types.html


BCC: Bump Chip Carrier BGA: Ball Grid Array; BGA graphic BOFP: Bumpered Quad Flat Pack CABGA/SSBGA: Chip Array/Small Scale Ball Grid Array CBGA: Ceramic Ball Grid Array CFP: Ceramic Flat Pack CPGA: Ceramic Pin Grid Array, CPGA Graphic CQFP: Ceramic Quad Flat Pack, CQFP Graphic TBD: Ceramic Lead-Less Chip Carrier DFN: Dual Flat Pack, No Lead **DLCC:** Dual Lead-Less Chip Carrier (Ceramic) ETOFP: Extra Thin Quad Flat Package FBGA: Fine-pitch Ball Grid Array fpBGA: Fine Pitch Ball Grid Array HSBGA: Heat Slug Ball Grid Array JLCC: J-Leaded Chip Carrier (Ceramic) J-Lead Picture LBGA: Low-Profile Ball Grid Array LCC: Leaded Chip Carrier LCC Graphic LCC: Leaded Chip Carrier Un-formed LCC Graphic LCCC: Leaded Ceramic Chip Carrier; LFBGA: Low-Profile, Fine-Pitch Ball Grid Array LGA: Land Grid Array, LGA uP [Pins are on the Motherboard, not the socket] LLCC: Leadless Leaded Chip Carrier LLCC Graphic LOFP: Low Profile Quad Flat Package MCMBGA: Multi Chip Module Ball Grid Array MCMCABGA: Multi Chip Module-Chip Array Ball Grid Array MLCC: Micro Lead-frame Chip Carrier

PBGA: Plastic Ball Grid Array PLCC: Plastic Leaded Chip Carrier PQFD: Plastic Quad Flat Pack PQFP: Plastic Quad Flat Pack PSOP: Plastic Small-Outline Package PSOP graphic **QFP:** Quad Flatpack **QFP** Graphics **QSOP:** Quarter Size Outline Package [Quarter Pitch Small Outline Package] SBGA: Super BGA - above 500 Pin count SOIC: Small Outline IC SO Flat Pack: Small Outline Flat Pack IC SOJ: Small-Outline Package [J-Lead]; J-Lead Picture SOP: Small-Outline Package; SOP IC, Socket SSOP: Shrink Small-Outline Package TBGA: Thin Ball Grid Array TOFP: Thin Quad Flat Pack TOFP Graphic **TSOP:** Thin Small-Outline Package **TSSOP:** Thin Shrink Small-Outline Package TVSOP: Thin Very Small-Outline Package VOFB: Very-thin Quad Flat Pack

Considerable activity today and for years to come on improving packaging technology

- Multiple die in a package
- Three-dimensional chip stacking
- Multiple levels of interconnect in stacks
- Through silicon via technology
- Power and heat management
- Cost driven and cost constrained

Back-End Process Flow

Testing of Integrated Circuits

Most integrated circuits are tested twice

• Wafer Probe Testing

- Quick test for functionality
- Usually does not include much parametric testing
- Relatively fast and low cost test
- Package costs often quite large
- Critical to avoid packaging defective parts
- Packaged Part Testing
 - Testing costs for packaged parts can be high
 - Extensive parametric tests done at package level for many parts
 - Data sheet parametrics with Max and Min values are usually tested on all Ics
 - Data sheet parametrics with Typ values are seldom tested
 - Occasionally require testing at two or more temperatures but this is costly
 - Critical to avoid packaging defective parts

End of Lecture 10