EE 330 Fall 2016 Seating

1. Brandon Baxter
 Zachary Bennett
 Steven Warren

2. Xiang Li
 Yi Qiu
 Benjamin Gisler
 David Clark

3. Benjamin Engebrect
 Brian Weber
 Austin Yurchik
 Sarah Sebastian

4. Steve Ukpan
 Jose Candelario
 Sarah Huber
 Dean Vanever

5. Shengxin Mao
 Yuxuan Yuan
 Li Qian
 Chenhang Xu

6. Christopher Little
 Robert Slezak

7. Liang Zhang

8. Jakub Hladik
 Timothy Lindquist
 Jacob Johnson
 William Henthorn
 Daniel Griffen

9. Benjamin Zickefoose
 Karla Beas
 Aurelien Chanel
 Travis Merrifield
 Joshua Pachl

10. Matthew Martinez
 Amna Aftab
 Matthew Rottinghaus
 Eric Middleton

11. Milan Patel
 Bailey Akers
 James Kluesner
 Alexander Christenson
 Nathaniel Summitt

12. Jiangning Xiong
 Sang Uk Park
 Jie-Hui Yan
 Abdulmagied Ibrahim
 Jinan Li

13. Apurba Kumar Das

14. Liang Zhang

15. Shengxin Mao

16. Christopher Little

17. Robert Slezak

18. Liang Zhang

19. Apurba Kumar Das

20. Liang Zhang

21. Apurba Kumar Das

22. Liang Zhang

23. Apurba Kumar Das

24. Liang Zhang

25. Apurba Kumar Das

26. Liang Zhang

27. Apurba Kumar Das

28. Liang Zhang

29. Apurba Kumar Das

30. Liang Zhang

31. Apurba Kumar Das

32. Liang Zhang

33. Apurba Kumar Das

34. Liang Zhang

35. Apurba Kumar Das

36. Liang Zhang

37. Apurba Kumar Das

38. Liang Zhang

39. Apurba Kumar Das

40. Liang Zhang

41. Apurba Kumar Das

42. Liang Zhang

43. Apurba Kumar Das

44. Liang Zhang

45. Apurba Kumar Das

46. Liang Zhang

47. Apurba Kumar Das

48. Liang Zhang

49. Apurba Kumar Das

50. Liang Zhang

51. Apurba Kumar Das

52. Liang Zhang

53. Apurba Kumar Das

54. Liang Zhang

55. Apurba Kumar Das

56. Liang Zhang

57. Apurba Kumar Das

58. Liang Zhang

59. Apurba Kumar Das

60. Liang Zhang
EE 330
Lecture 11

Back-end Processes (wrap up)

Semiconductor Processes

Devices in Semiconductor Processes

- Resistors
- Diodes
Review from Last Lecture

Back-End Process Flow

- Wafer Probe
- Wafer Dicing
- Die Attach
- Wire Attach (bonding)
- Package
- Test
- Ship
Wafer Dicing

Review from Last Lecture
Die Attach

1. Eutectic
2. Pre-form
3. Conductive Epoxy
Electrical Connections (Bonding)

- Wire Bonding
- Bump Bonding
Packaging

1. Many variants in packages now available
2. Considerable development ongoing on developing packaging technology
3. Cost can vary from few cents to tens of dollars
4. Must minimize product loss after packaged
5. Choice of package for a product is serious business
6. Designer invariably needs to know packaging plans and package models
Packaging

- IC package
 - Insertion type
 - Standard DIP
 - SIP
 - PGA
 - Surface mounting type
 - SOP
 - TSOP
 - QFP
 - SOJ
 - QFJ
 - QFN
 - TCP
 - BGA

www.necel.com
Packaging

Resin

Silicon chip (Bare Chip)

High-density multilayer wiring board

Printed circuit board

External terminal (Soldered balls or Lead frames)

Chip bump (μ-soldered ball)

Resin

Silicon Chip (Bare Chip)

High-density multilayer wiring board
Pin Pitch Varies with Package Technology

All measurements are nominal in [mm].

<table>
<thead>
<tr>
<th>Name</th>
<th>Pin pitch</th>
<th>Size</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIP or DIL</td>
<td>2.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOIC-16</td>
<td>1.27</td>
<td>3.9 x 10</td>
<td>1.72</td>
</tr>
<tr>
<td>SSOP</td>
<td>0.635</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSSOP54-II</td>
<td>0.8</td>
<td>12.7 x 22.22</td>
<td>~1</td>
</tr>
<tr>
<td>PLCC44</td>
<td>1.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PQ208[1]</td>
<td>0.50</td>
<td>28 x 28</td>
<td>3.4</td>
</tr>
<tr>
<td>TQFP64</td>
<td>0.40</td>
<td>7 x 7</td>
<td>1.0</td>
</tr>
<tr>
<td>TQFP144[2]</td>
<td>0.50</td>
<td>20 x 20</td>
<td>1.0</td>
</tr>
<tr>
<td>128PQFP</td>
<td>0.50</td>
<td>23.23 x 14.0</td>
<td>3.15</td>
</tr>
</tbody>
</table>

Many standard packages available today:

BCC: Bump Chip Carrier
BGA: Ball Grid Array, BGA graphic
BQFP: Bumpered Quad Flat Pack
CABGA/SSBGA: Chip Array/Small Scale Ball Grid Array
CBGA: Ceramic Ball Grid Array
CFP: Ceramic Flat Pack
CPGA: Ceramic Pin Grid Array, CPGA Graphic
CQFP: Ceramic Quad Flat Pack, CQFP Graphic
TBD: Ceramic Lead-Less Chip Carrier
DFN: Dual Flat Pack, No Lead
DLCC: Dual Lead-Less Chip Carrier (Ceramic)
ETQFP: Extra Thin Quad Flat Package
FBGA: Fine-pitch Ball Grid Array
fPBG: Fine Pitch Ball Grid Array
HSBGA: Heat Slug Ball Grid Array
JLCC: J-Leaded Chip Carrier (Ceramic) J-Lead Picture
LBGA: Low-Profile Ball Grid Array
LCC: Leaded Chip Carrier LCC Graphic
LCC: Leadless Chip Carrier Un-formed LCC Graphic
LCCC: Leadless Ceramic Chip Carrier;
LFBGA: Low-Profile, Fine-Pitch Ball Grid Array
LGA: Land Grid Array, LGA up [Pins are on the Motherboard, not the socket]
LLCC: Leadless Leaded Chip Carrier LLCC Graphic
LQFP: Low Profile Quad Flat Package
MCMBGA: Multi Chip Module Ball Grid Array
MCMCABGA: Multi Chip Module-Chip Array Ball Grid Array
MLCC: Micro Lead-frame Chip Carrier
PBGA: Plastic Ball Grid Array
PLCC: Plastic Leaded Chip Carrier
PQFD: Plastic Quad Flat Pack
PQFP: Plastic Quad Flat Pack
PSOP: Plastic Small-Outline Package PSOP graphic
QFP: Quad Flatpack QFP Graphics
QSOP: Quarter Size Outline Package [Quarter Pitch Small Outline Package]
SBGA: Super BGA - above 500 Pin count
SOIC: Small Outline IC
SOF Flat Pack: Small Outline Flat Pack IC
S0J: Small-Outline Package [J-Lead], J-Lead Picture
SOP: Small-Outline Package; SOP IC, Socket
SSOP: Shrink Small-Outline Package
TBGA: Thin Ball Grid Array
TQFP: Thin Quad Flat Pack TQFP Graphic
TSOP: Thin Small-Outline Package
TSSOP: Thin Shrink Small-Outline Package
TVSOP: Thin Very Small-Outline Package
VQFB: Very-thin Quad Flat Pack
Considerable activity today and for years to come on improving packaging technology

- Multiple die in a package
- Three-dimensional chip stacking
- Multiple levels of interconnect in stacks
- Through silicon via technology
- Power and heat management
- Cost driven and cost constrained
The following few slides come from a John Lau presentation

TSV Interposer: The Most Cost-Effective Integrator for 3D IC Integration

John H. Lau
Electronics & Optoelectronics Research Laboratories
Industrial Technology Research Institute (ITRI)
Chutung, Hsinchu, Taiwan 310, R.O.C.
886-3591-3390, johnlau@itri.org.tw
2.5D IC Integration with Passive Interposer
TSV passive interposer supporting high-power chips (e.g., microprocessor and logic) on its top side and low-power chips (e.g., memory) on its bottom side.

Special underfills are needed between the Cu-filled interposer and all the chips. Ordinary underfills are needed between the interposer and the organic substrate.
Back-End Process Flow

1. Wafer Probe
2. Wafer Dicing
3. Die Attach
4. Wire Attach (bonding)
5. Package
6. Test
7. Ship
Testing of Integrated Circuits

Most integrated circuits are tested twice

- **Wafer Probe Testing**
 - Quick test for functionality
 - Usually does not include much parametric testing
 - Relatively fast and low cost test
 - Package costs often quite large
 - Critical to avoid packaging defective parts

- **Packaged Part Testing**
 - Testing costs for packaged parts can be high
 - Extensive parametric tests done at package level for many parts
 - Data sheet parametrics with Max and Min values are usually tested on all Ics
 - Data sheet parametrics with Typ values are seldom tested
 - Occasionally require testing at two or more temperatures but this is costly
 - Critical to avoid packaging defective parts
Basic Semiconductor Processes

MOS (Metal Oxide Semiconductor)

1. NMOS n-ch
2. PMOS p-ch
3. CMOS n-ch & p-ch
 • Basic Device: MOSFET
 • Niche Device: MESFET
 • Other Devices: Diode
 BJT
 Resistors
 Capacitors
 Schottky Diode
Basic Semiconductor Processes

Bipolar

1. T²L
2. ECL
3. I²L
4. Linear ICs
 - Basic Device: BJT (Bipolar Junction Transistor)
 - Niche Devices: HBJT (Heterojunction Bipolar Transistor)
 HBT
 - Other Devices: Diode
 Resistor
 Capacitor
 Schottky Diode
 JFET (Junction Field Effect Transistor)
Basic Semiconductor Processes

Other Processes

• Thin and Thick Film Processes
 – Basic Device: Resistor
• BiMOS or BiCMOS
 – Combines both MOS & Bipolar Processes
 – Basic Devices: MOSFET & BJT
• SiGe
 – BJT with HBT implementation
• SiGe / MOS
 – Combines HBT & MOSFET technology
• SOI / SOS (Silicon on Insulator / Silicon on Sapphire)
• Twin-Well & Twin Tub CMOS
 – Very similar to basic CMOS but more optimal transistor char.
Devices in Semiconductor Processes

- **Standard CMOS Process**
 - MOS Transistors
 - n-channel
 - p-channel
 - Capacitors
 - Resistors
 - Diodes
 - BJT (decent in some processes)
 - npn
 - pnp
 - JFET (in some processes)
 - n-channel
 - p-channel

- **Standard Bipolar Process**
 - BJT
 - npn
 - pnp
 - JFET
 - n-channel
 - p-channel
 - Diodes
 - Resistors
 - Capacitors

- **Niche Devices**
 - Photodetectors (photodiodes, phototransistors, photoresistors)
 - MESFET
 - HBT
 - Schottky Diode (not Shockley)
 - MEM Devices
 - TRIAC/SCR
 -
Basic Devices

• Standard CMOS Process
 – MOS Transistors
 • n-channel
 • p-channel
 – Capacitors
 – Resistors
 – Diodes
 – BJT (in some processes)
 • npn
 • pnp
 – JFET (in some processes)
 • n-channel
 • p-channel

• Niche Devices
 – Photodetectors
 – MESFET
 – Schottky Diode (not Shockley)
 – MEM Devices
 – Triac/SCR
 –

Primary Consideration in This Course

Some Consideration in This Course
Basic Devices and Device Models

- Resistor
- Diode
- Capacitor
- MOSFET
- BJT
Basic Devices and Device Models

Resistor

• Diode
• Capacitor
• MOSFET
• BJT

Resistors were discussed when considering interconnects so will only be briefly reviewed here.
Resistors

• Generally thin-film devices
• Almost any thin-film layer can be used as a resistor
 – Diffused resistors
 – Poly Resistors
 – Metal Resistors
 – “Thin-film” adders (SiCr or NiCr)
• Subject to process variations, gradient effects and local random variations
• Often temperature and voltage dependent
 – Ambient temperature
 – Local Heating
• Nonlinearities often a cause of distortion when used in circuits
• Trimming possible resistors
 – Laser, links, switches
Resistor Model

Model:

\[R = \frac{V}{I} \]
Resistivity

- Volumetric measure of conduction capability of a material

\[\rho = \frac{AR}{L} \]

for homogeneous material, \(\rho \perp A, R, L \)

Area is \(A \)

units: ohm cm
Sheet Resistance

\[R_{\square} = \frac{RW}{L} \quad (\text{for } d \ll w, d \ll L) \quad \text{units: ohms/} \cdot \]

for homogeneous materials, \(R \) is independent of \(W, L, R \)
Relationship between ρ and R_{\square}

\[R_{\square} = \frac{RW}{L} \]

\[\rho = \frac{AR}{L} \]

\[\rho = \frac{A}{W} R_{\square} = \frac{Wd}{W} R_{\square} = d \times R_{\square} \]

Number of squares, N_S, often used instead of L / W in determining resistance of film resistors

\[R = R_{\square} N_S \]
Example 1

\[R = ? \]
Example 1

\[\frac{L}{W} = N_s \]
Example 1

\[R = ? \]
Example 1

\[R = ? \]

\[N_S = 8.4 \]

\[R = R_s (8.4) \]
Corners in Film Resistors

Rule of Thumb: .55 squares for each corner
Example 2

Determine R if $R = 100 \, \Omega$
Example 2

\[N_s = 17.1 \]
\[R = (17.1) \, R \]
\[R = 1710 \, \Omega \]
Resistivity of Materials used in Semiconductor Processing

- Cu: $1.7E-6 \ \Omega \text{cm}$
- Al: $2.7E-4 \ \Omega \text{cm}$
- Gold: $2.4E-6 \ \Omega \text{cm}$
- Platinum: $3.0E-6 \ \Omega \text{cm}$
- Polysilicon: $1E-2 \text{ to } 1E4 \ \Omega \text{cm}$*
- n-Si: $0.25 \text{ to } 5 \ \Omega \text{cm}$*
- intrinsic Si: $2.5E5 \ \Omega \text{cm}$
- SiO$_2$: $E14 \ \Omega \text{cm}$

* But fixed in a given process
Resistivity & Mobility Calculator/Graph for Various Doping Concentrations in Silicon

Dopant:
- Arsenic
- Boron
- Phosphorus

Impurity Concentration:
1e15 (cm⁻³)

Mobility:
1358.6941377260254 [cm²/V·s]

Resistivity:
4.590746148183427 [Ω-cm]

Calculations are for a silicon substrate.
Resistivity & Mobility Calculator/Graph for Various Doping Concentrations in Silicon

Depant:
- Arsenic
- Boron
- Phosphorus

Impurity Concentration:
1e15 (cm⁻³)

Mobility:
461.9540345952693 [cm²/V·s]

Resistivity:
13.511075756839005 [Ω·cm]

Calculations are for a silicon substrate.
Resistivity & Mobility Calculator/Graph for Various Doping Concentrations in Silicon

Dopant:
- Arsenic
- Boron
- Phosphorus

Impurity Concentration:

Mobility:

Resistivity:

Calculations are for a silicon substrate.

http://www.cleanroom.byu.edu/ResistivityCal.phtml
Temperature Coefficients

Used for indicating temperature sensitivity of resistors & capacitors

For a resistor:

\[
TCR = \left(1 \frac{dR}{R \, dT} \right)_{\text{op. temp}} \times 10^6 \text{ ppm/°C}
\]

This diff eqn can easily be solved if TCR is a constant

\[
R(T_2) = R(T_1) e^{\frac{T_2 - T_1}{10^6} TCR}
\]

\[
R(T_2) \approx R(T_1) \left[1 + (T_2 - T_1) \frac{TCR}{10^6} \right]
\]

Identical Expressions for Capacitors
Voltage Coefficients

Used for indicating voltage sensitivity of resistors & capacitors

For a resistor:

$$\text{VCR} = \left(\frac{1}{R} \frac{dR}{dV} \right)_{\text{ref voltage}} \cdot 10^6 \text{ ppm/V}$$

This diff eqn can easily be solved if VCR is a constant

$$R(V_2) = R(V_1) e^{\frac{V_2-V_1}{10^6} \text{VCR}}$$

$$R(V_2) \approx R(V_1) \left[1 + \left(V_2 - V_1\right)\frac{\text{VCR}}{10^6} \right]$$

Identical Expressions for Capacitors
Temperature and Voltage Coefficients

- Temperature and voltage coefficients often quite large for diffused resistors
- Temperature and voltage coefficients often quite small for poly and metal resistors
<table>
<thead>
<tr>
<th>Type of layer</th>
<th>Sheet Resistance Ω/\square</th>
<th>Accuracy %</th>
<th>Temperature Coefficient ppm/°C</th>
<th>Voltage Coefficient ppm/V</th>
</tr>
</thead>
<tbody>
<tr>
<td>n + diff</td>
<td>30 - 50</td>
<td>20 - 40</td>
<td>200 - 1K</td>
<td>50 - 300</td>
</tr>
<tr>
<td>p + diff</td>
<td>50 - 150</td>
<td>20 - 40</td>
<td>200 - 1K</td>
<td>50 - 300</td>
</tr>
<tr>
<td>n - well</td>
<td>2K - 4K</td>
<td>15 - 30</td>
<td>5K</td>
<td>10K</td>
</tr>
<tr>
<td>p - well</td>
<td>3K - 6K</td>
<td>15 - 30</td>
<td>5K</td>
<td>10K</td>
</tr>
<tr>
<td>pinched n - well</td>
<td>6K - 10K</td>
<td>25 - 40</td>
<td>10K</td>
<td>20K</td>
</tr>
<tr>
<td>pinched p - well</td>
<td>9K - 13K</td>
<td>25 - 40</td>
<td>10K</td>
<td>20K</td>
</tr>
<tr>
<td>first poly</td>
<td>20 - 40</td>
<td>25 - 40</td>
<td>500 - 1500</td>
<td>20 - 200</td>
</tr>
<tr>
<td>second poly</td>
<td>15 - 40</td>
<td>25 - 40</td>
<td>500 - 1500</td>
<td>20 - 200</td>
</tr>
</tbody>
</table>

From:F. Maloberti : Design of CMOS Analog Integrated Circuits - “Resistors, Capacitors, Switches”
Example: Determine the percent change in resistance of a 5K Polysilicon resistor as the temperature increases from 30°C to 60°C if the TCR is constant and equal to 1500 ppm/°C

\[
R(T_2) \approx R(T_1) \left[1 + (T_2 - T_1) \frac{TCR}{10^6} \right]
\]

\[
R(T_2) \approx R(T_1) \left[1 + (30^\circ C) \frac{1500}{10^6} \right]
\]

\[
R(T_2) \approx R(T_1) [1 + .045]
\]

\[
R(T_2) \approx R(T_1) [1.045]
\]

Thus the resistor increases by 4.5%
Basic Devices and Device Models

- Resistor
- Diode
- Capacitor
- MOSFET
- BJT
Periodic Table of the Elements

![Periodic Table Image](http://www.dayah.com/periodic/Images/periodic%20table.png)
<table>
<thead>
<tr>
<th>IIIA</th>
<th>IVA</th>
<th>VA</th>
<th>VIA</th>
<th>VIIA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td>N</td>
<td>O</td>
<td>F</td>
</tr>
<tr>
<td>Boron</td>
<td>Carbon</td>
<td>Nitrogen</td>
<td>Oxygen</td>
<td>Fluorine</td>
</tr>
<tr>
<td>10.811</td>
<td>12.0107</td>
<td>14.00674</td>
<td>15.9994</td>
<td>18.9984032</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>Al</td>
<td>Si</td>
<td>P</td>
<td>S</td>
<td>Cl</td>
</tr>
<tr>
<td>Aluminium</td>
<td>Silicon</td>
<td>Phosphorus</td>
<td>Sulfur</td>
<td>Chlorine</td>
</tr>
<tr>
<td>26.981538</td>
<td>28.0855</td>
<td>30.973761</td>
<td>32.066</td>
<td>35.453</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
</tr>
<tr>
<td>Ga</td>
<td>Ge</td>
<td>As</td>
<td>Se</td>
<td>Br</td>
</tr>
<tr>
<td>Gallium</td>
<td>Germanium</td>
<td>Arsenic</td>
<td>Selenium</td>
<td>Bromine</td>
</tr>
<tr>
<td>69.723</td>
<td>72.64</td>
<td>74.92160</td>
<td>78.96</td>
<td>79.904</td>
</tr>
<tr>
<td></td>
<td>49</td>
<td>50</td>
<td>51</td>
<td>52</td>
</tr>
<tr>
<td>In</td>
<td>Sn</td>
<td>Sb</td>
<td>Te</td>
<td>I</td>
</tr>
<tr>
<td>Indium</td>
<td>Tin</td>
<td>Antimony</td>
<td>Tellurium</td>
<td>Iodine</td>
</tr>
<tr>
<td>114.818</td>
<td>118.710</td>
<td>121.760</td>
<td>127.60</td>
<td>126.90447</td>
</tr>
<tr>
<td></td>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
</tr>
<tr>
<td>Tl</td>
<td>Pb</td>
<td>Bi</td>
<td>Po</td>
<td>At</td>
</tr>
<tr>
<td>Thallium</td>
<td>Lead</td>
<td>Bismuth</td>
<td>Polonium</td>
<td>Astatine</td>
</tr>
<tr>
<td>204.3833</td>
<td>207.2</td>
<td>208.98038</td>
<td>(209)</td>
<td>(210)</td>
</tr>
</tbody>
</table>
All elements in group IV have 4 valence-band electrons.
Only 3 Valence-band Electrons

Serves as an “acceptor” of electrons
Acts as a p-type impurity when used as a silicon dopant

All elements in group III have 3 valence-band electrons
The Atom of Boron (B)

Serves as an “donor” of electrons
Acts as an \textit{n-type} impurity when used as a silicon dopant
All elements in group V have 5 valence-band electrons
The Atom of Phosphorus (P)
5
B
Boron 10.811
1s² 2s² 2p¹

14
Si
Silicon 28.0855
[Ne]3s² 3p²

15
P
Phosphorus 30.973762
[Ne]3s² 3p³

33
As
Arsenic 74.92160
[Ar]3d¹⁰ 4s² 4p³

51
Sb
Antimony 121.760
[Kr]4d¹⁰ 5s² 5p³
Silicon Dopants in Semiconductor Processes

B (Boron) widely used a dopant for creating p-type regions

P (Phosphorus) widely used a dopant for creating n-type regions
(bulk doping, diffuses fast)

As (Arsenic) widely used a dopant for creating n-type regions
(Active region doping, diffuses slower)
End of Lecture 11