Devices in Semiconductor Processes
Quiz 11 A wire obtained with a ball bond is shown sitting on a bonding pad. What is a typical value for the dimension d_1 shown?
And the number is
And the number is 3
Quiz 11 A wire obtained with a ball bond is shown sitting on a bonding pad. What is a typical value for the dimension d_1 shown?

$d_1 = 25 \mu$m
Back-End Process Flow

- Wafer Probe
- Wafer Dicing
- Die Attach
- Wire Attach (bonding)
- Package
- Test
- Ship

Review from Last Time
Review from Last Time

Wafer Dicing

Gang of slitting blades

Rotary stage indexer

Silicon wafer

X axis

Y axis

www.renishaw.com
Review from Last Time

Die Attach

1. Eutectic
2. Pre-form
3. Conductive Epoxy
Review from Last Time

Electrical Connections (Bonding)

• Wire Bonding
• Bump Bonding
Basic Semiconductor Processes

MOS (Metal Oxide Semiconductor)

1. NMOS n-ch
2. PMOS p-ch
3. CMOS n-ch & p-ch
 • Basic Device: MOSFET
 • Niche Device: MESFET
 • Other Devices: Diode
 BJT
 Resistors
 Capacitors
 Schottky Diode
Basic Semiconductor Processes

Bipolar

1. T^2L
2. ECL
3. I2L
4. Linear ICs
 - Basic Device: BJT (Bipolar Junction Transistor)
 - Niche Devices: HBJT (Heterojunction Bipolar Transistor)
 - Other Devices: Diode
 Resistor
 Capacitor
 Schottky Diode
 JFET (Junction Field Effect Transistor)
Basic Semiconductor Processes

Other Processes

• Thin and Thick Film Processes
 – Basic Device: Resistor
• BiMOS or BiCMOS
 – Combines both MOS & Bipolar Processes
 – Basic Devices: MOSFET & BJT
• SiGe
 – BJT with HBT implementation
• SiGe / MOS
 – Combines HBT & MOSFET technology
• SOI / SOS (Silicon on Insulator / Silicon on Sapphire)
• Twin-Well & Twin Tub CMOS
 – Very similar to basic CMOS but more optimal transistor char.
Devices in Semiconductor Processes

- **Standard CMOS Process**
 - MOS Transistors
 - n-channel
 - p-channel
 - Capacitors
 - Resistors
 - Diodes
 - BJT (decent in some processes)
 - npn
 - pnp
 - JFET (in some processes)
 - n-channel
 - p-channel

- **Standard Bipolar Process**
 - BJT
 - npn
 - pnp
 - JFET
 - n-channel
 - p-channel
 - Diodes
 - Resistors
 - Capacitors

- **Niche Devices**
 - Photodetectors (photodiodes, phototransistors, photoresistors)
 - MESFET
 - HBT
 - Schottky Diode (not Shockley)
 - MEM Devices
 -
Basic Devices

- **Standard CMOS Process**
 - MOS Transistors
 - n-channel
 - p-channel
 - Capacitors
 - Resistors
 - Diodes
 - BJT (in some processes)
 - npn
 - pnp

- **Niche Devices**
 - Photodetectors
 - MESFET
 - Schottky Diode *(not Shockley)*
 - MEM Devices
 - Triac/SCR
 -

Primary Consideration in This Course

Some Consideration in This Course
Basic Devices and Device Models

• Resistor
• Diode
• Capacitor
• MOSFET
• BJT
Basic Devices and Device Models

- Resistor
 - Diode
 - Capacitor
 - MOSFET
 - BJT

Resistors were discussed when considering interconnects so will only be briefly reviewed here.
Resistors

- Generally thin-film devices
- Almost any thin-film layer can be used as a resistor
 - Diffused resistors
 - Poly Resistors
 - Metal Resistors
 - “Thin-film” adders (SiCr or NiCr)
- Subject to process variations, gradient effects and local random variations
- Often temperature and voltage dependent
 - Ambient temperature
 - Local Heating
- Nonlinearities often a cause of distortion when used in circuits
- Trimming possible resistors
 - Laser, links, switches
Resistor Model

Model:

$$R = \frac{V}{I}$$
Resistivity

- Volumetric measure of conduction capability of a material

\[\rho = \frac{AR}{L} \]

for homogeneous material, \(\rho \perp A, R, L \)

units: ohm cm
Sheet Resistance

\[R_{\square} = \frac{RW}{L} \]
(for \(d \ll w, d \ll L \))
units: ohms/\(\square \)

for homogeneous materials, \(R_{\square} \) is independent of \(W, L, R \)
Relationship between ρ and R_{\square}

\[R_{\square} = \frac{RW}{L} \]
\[\rho = \frac{AR}{L} \]

\[\rho = \frac{A}{W} R_{\square} = \frac{Wd}{W} R_{\square} = d \times R_{\square} \]

Number of squares, N_S, often used instead of L / W in determining resistance of film resistors

\[R = R_{\square} N_S \]
Example 1

\[R = ? \]

\[W \]

\[L \]
Example 1

\[\frac{L}{W} = N_s \]
Example 1

\[
\begin{array}{ccccccccc}
.4 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \\
\end{array}
\]

\[R = ?\]
Example 1

\[R = \, ? \]

\[N_s = 8.4 \]

\[R = R_{\Box}(8.4) \]
Corners in Film Resistors

Rule of Thumb: .55 squares for each corner
Example 2

Determine R if $R_{\square} = 100 \, \Omega / \square$
Example 2

\[N_s = 17.1 \]
\[R = (17.1) R_\square \]
\[R = 1710 \, \Omega \]
Resistivity of Materials used in Semiconductor Processing

- Cu: $1.7E-6 \ \Omega\text{cm}$
- Al: $2.7E-4 \ \Omega\text{cm}$
- Gold: $2.4E-6 \ \Omega\text{cm}$
- Platinum: $3.0E-6 \ \Omega\text{cm}$
- n-Si: 0.25 to $5 \ \Omega\text{cm}$
- intrinsic Si: $2.5E5 \ \Omega\text{cm}$
- SiO$_2$: $E14 \ \Omega\text{cm}$
Temperature Coefficients

Used for indicating temperature sensitivity of resistors & capacitors

For a resistor:

\[
TCR = \left(\frac{1}{R} \frac{dR}{dT} \right)_{\text{op. temp}} \cdot 10^6 \text{ ppm/°C}
\]

This diff eqn can easily be solved if TCR is a constant

\[
R(T_2) = R(T_1) e^{\frac{T_2 - T_1}{10^6} TCR}
\]

\[
R(T_2) \approx R(T_1) \left[1 + (T_2 - T_1) \frac{TCR}{10^6} \right]
\]

Identical Expressions for Capacitors
End of Lecture 12