Digital Circuit Design

- Hierarchical Design
- Basic Logic Gates
- Properties of Logic Families
- Characterization of CMOS Inverter
- Static CMOS Logic Gates
 - Ratio Logic
- Propagation Delay
 - Simple analytical models
 - Elmore Delay
- Sizing of Gates
- Propagation Delay with Multiple Levels of Logic
- Optimal driving of Large Capacitive Loads
- Power Dissipation in Logic Circuits
- Other Logic Styles
- Array Logic
- Ring Oscillators
Hierarchical Digital Design Domains:

- Behavioral:
- Structural:
- Physical

Multiple Levels of Abstraction
Hierarchical Digital Design Domains:

- Behavioral:
- Structural:
- Physical

Bottom Up Design
Top Down Design
Hierarchical Digital Design Domains:

- Behavioral:
 - Structural:
 - Physical

Multiple Sublevels in Each Major Level
All Design Steps may not Fit Naturally in this Description
Hierarchical Analog Design Domains:

- Behavioral:
- Structural:
- Physical

Top Down Design

Bottom Up Design
Hierarchical Digital Design Domains:

Behavioral: Describes what a system does or what it should do

Structural: Identifies constituent blocks and describes how these blocks are interconnected and how they interact

Physical: Describes the constituent blocks to both the transistor and polygon level and their physical placement and interconnection

Multiple representations often exist at any level or sublevel
Example: Two distinct representations at the physical level (polygon sublevel)
Example: Two distinct representations at physical level (schematic sublevel)

\[\frac{W}{L} = 4 \]

- \(W = 4 \mu \)
- \(L = 1 \mu \)

- \(W = 8 \mu \)
- \(L = 2 \mu \)

- \(W_1, L \)
- \(W_2, L \)
- \(W_1 + W_2, L \)
Example: Two distinct representations at the structural/behavioral level (gate sublevel)

\[C = A \oplus B \]
In each domain, multiple levels of abstraction are generally used.

Consider Physical Domain

- Consider lowest level to highest
 0 - placement of diffusions, thin oxide regions, field oxide, etc. on a substrate.
 1 - polygons identify all mask information (not unique)
 2 - transistors (not unique)
 3 - gate level (not unique)
 4 - cell level
 Adders, Flip Flop, MUTs, …
Structural Level:

- DSP
- Blocks (Adders, Memory, Registers, etc.)
- Gates
- Transistor

Information Type

HDL
Netlists
Behavior Level (top down):

- Application
- Programs
- Subroutines
- Boolean Expressions

Information Type
High-Level Language
HDL
Digital Circuit Design

- Hierarchical Design
- Basic Logic Gates
- Properties of Logic Families
- Characterization of CMOS Inverter
 - Static CMOS Logic Gates
 - Ratio Logic
 - Propagation Delay
 - Simple analytical models
 - Elmore Delay
 - Sizing of Gates
- Propagation Delay with Multiple Levels of Logic
- Optimal driving of Large Capacitive Loads
- Power Dissipation in Logic Circuits
- Other Logic Styles
- Array Logic
- Ring Oscillators
Representation of Digital Systems
Standard Approach to Digital Circuit Design

1. Behavioral Description
 - Technology independent
2. RTL Description
 (must verify (1) ⇔ (2))
3. RTL Compiler
 Registers and Combinational Logic Functions
4. Logic Optimizer
5. Logic Synthesis
 Generally use a standard call library for synthesis
Representation of Digital Systems
Standard Approach to Digital Circuit Design

1. Behavioral Description
 - Technology independent
2. RTL Description
 (must verify (1) ⇔ (2))
3. RTL Compiler
 Registers and Combinational Logic Functions
4. Logic Optimizer
5. Logic Synthesis
 Generally use a standard call library for synthesis
Representation of Digital Systems
Standard Approach to Digital Circuit Design

1. Behavioral Description
 - Technology independent
2. RTL Description
 (must verify (1) ⇔ (2))
3. RTL Compiler
 Registers and Combinational Logic Functions
4. Logic Optimizer

5. Logic Synthesis
 Generally use a standard call library for synthesis
6. Place and Route

(physically locates all gates and registers and interconnects them)

7. Layout Extraction
 - DRC
 - Back Annotation

8. Post Layout simulation

 May necessitate a return to a higher level in the design flow

Logic synthesis, though extensively used, often is not as efficient nor as optimal for implementing some important blocks or some important functions

These applications generally involve transistor level logic circuit design that may combine one or more different logic design styles
Logic Optimization

What is optimized (or minimized) ?

- Number of Gates
- Number or Levels of Logic
- Speed
- Delay
- Power Dissipation
- Area
- Cost
- Peak Current

Depends Upon What User Is Interested In
Standard Cell Library

• Set of primitive building blocks that have been pre-characterized for dc and high frequency performance
• Generally includes basic multiple-input gates and flip flops
• P-cells often included
• Can include higher-level blocks
 – Adders, multipliers, shift registers, counters,…
• Cell library often augmented by specific needs of a group or customer
Logic Circuit Block Design

Many different logic design styles

- Static Logic Gates
- Complex Logic Gates
- Pseudo NMOS
- Pass Transistor Logic
- Dynamic Logic Gates
 - Domino Logic
 - Zipper Logic
 - Output Prediction Logic

Various logic design styles often combined in the implementation of one logic block
The basic logic gates

\[Y = \overline{X} \]

\[Y = X \]

\[Y = A + B \]

\[Y = A \cdot B \]

\[Y = \overline{A + B} \]

\[Y = \overline{A \cdot B} \]

\[Y = A \oplus B \]

\[Y = \overline{A \oplus B} \]

\[Y = A_1 \cdot A_2 \cdot \ldots \cdot A_n \]

\[Y = A_1 + A_2 + \ldots + A_n \]
The basic logic gates

<table>
<thead>
<tr>
<th>Input</th>
<th>Gate</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td>Y = \overline{X}</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>Y = X</td>
</tr>
<tr>
<td>A, B</td>
<td></td>
<td>Y = A + B</td>
</tr>
<tr>
<td>A, B</td>
<td></td>
<td>Y = A \bullet B</td>
</tr>
</tbody>
</table>

Question: How many basic one and two input gates exist and how many of these are useful?
The basic logic gates

The set of NOR gates is complete
 Any combinational logic function can be realized with only multiple-input NOR gates

The set of NAND gates is complete
 Any combinational logic function can be realized with only multiple-input NOR gates

Performance of the BASIC gates is critical!
The basic logic gates

A gate logic family can be formed based upon a specific design style for implementing logic functions.

Many different gate logic family types exist:
- NMOS
- PMOS
- CMOS
- TTL
- ECL
- RTL
- DCTL
...

Substantial differences in performance from one family type to another:
- Power
- Area
- Noise Margins
- …
The basic logic gates

The characteristics of any gate logic family can be expressed rather simply in terms of the characteristics of the basic inverter in that logic family.
The basic logic gates

It suffices to characterize the inverter of a logic family and then express the performance of other gates in that family in terms of the performance of the inverter.
The basic logic gates

It suffices to characterize the inverter of a logic family and then express the performance of other gates in that family in terms of the performance of the inverter.

What characteristics are required and desirable for an inverter to form the basis for a useful logic family?
What restrictions are there on the designer for building Boolean circuits?

- None !!!!
- It must “work” as expected
- Designer is Master of the silicon !
Desirable and/or Required Logic Family Characteristics

What are the desired characteristics of a logic family?
Desirable and/or Required Logic Family Characteristics

1. High and low logic levels must be uniquely distinguishable (even in a long cascade)
2. Capable of driving many loads (good fanout)
3. Fast transition times (but in some cases, not too fast)
4. Good noise margins (low error probabilities)
5. Small die area
6. Low power consumption
7. Economical process requirements
Desirable and/or Required Logic
Family Characteristics

8. Minimal noise injection to substrate
9. Low leakage currents
10. No oscillations during transitions
11. Compatible with synthesis tools
12. Characteristics do not degrade too much with temperature
13. Characteristics do not vary too much with process variations

Are some of these more important than others?
Desirable and/or Required Logic Family Characteristics

8. Minimal noise injection to substrate
9. Low leakage currents
10. No oscillations during transitions
11. Compatible with synthesis tools
12. Characteristics do not degrade too much with temperature
13. Characteristics do not vary too much with process variations

Are some of these more important than others?

Yes! – must have well-defined logic levels for circuits to even function as logic
Desirable and/or Required Logic Family Characteristics

Are some of these more important than others?

Yes ! – must have well-defined logic levels for circuits to even function as logic

What properties of an inverter are necessary for it to be useful for building a logic family?

What are the logic levels for a given inverter of for a given logic family?
End of Lecture 34