Digital Circuits

Characterization of CMOS Inverter
Static CMOS Logic Gates
Digital Circuit Design

- Hierarchical Design
- Basic Logic Gates
- Properties of Logic Families
 - Characterization of CMOS Inverter
- Static CMOS Logic Gates
 - Ratio Logic
- Propagation Delay
 - Simple analytical models
 - Elmore Delay
- Sizing of Gates
- Propagation Delay with Multiple Levels of Logic
- Optimal driving of Large Capacitive Loads
- Power Dissipation in Logic Circuits
- Other Logic Styles
- Array Logic
- Ring Oscillators
Review from last time:

The basic logic gates

The characteristics of any gate logic family can be expressed rather simply in terms of the characteristics of the basic inverter in that logic family.
Review from last time:

The basic logic gates

It suffices to characterize the inverter of a logic family and then express the performance of other gates in that family in terms of the performance of the inverter.

What characteristics are required and desirable for an inverter to form the basis for a useful logic family?
Desirable and/or Required Logic Family Characteristics

1. High and low logic levels must be uniquely distinguishable (even in a long cascade)
2. Capable of driving many loads (good fanout)
3. Fast transition times (but in some cases, not too fast)
4. Good noise margins (low error probabilities)
5. Small die area
6. Low power consumption
7. Economical process requirements
Desirable and/or Required Logic Family Characteristics

8. Minimal noise injection to substrate
9. Low leakage currents
10. No oscillations during transitions
11. Compatible with synthesis tools
12. Characteristics do not degrade too much with temperature
13. Characteristics do not vary too much with process variations

Are some of these more important than others?

Yes! – must have well-defined logic levels for circuits to even function as logic
Review from last time:

The two-inverter loop

\[\text{Standard 6-transistor SRAM Cell} \]
When $V_{\text{OUT}} = V_{\text{IN}}$ for the inverter, V'_{OUT} is also equal to V_{IN}. Thus the intersection point for $V_{\text{OUT}} = V_{\text{IN}}$ in the inverter transfer characteristics (ITC) is also an intersection point for $V'_{\text{OUT}} = V_{\text{IN}}$ in the inverter-pair transfer characteristics (IPTC).
The inverter-pair transfer characteristics must have three unique intersection points with the $V'_{\text{OUT}} = V_{\text{IN}}$ line.

The two extreme intersection points of the inverter-pair transfer characteristics with the $V'_{\text{OUT}} = V_{\text{IN}}$ line are V_H and V_L.

Can we legislate V_H and V_L for a logic family?
Transfer characteristics of the static CMOS inverter

Review from last time:
Transfer characteristics of the static CMOS inverter
(Neglect λ effects)

Case 1 M_1 triode, M_2 cutoff

\[
I_{D1} = \mu_n C_{oxn} \frac{W_1}{L_1} \left(V_{IN} - V_{Tn} - \frac{V_{OUT}}{2} \right) V_{OUT}
\]

$\quad I_{D2} = 0$

Equating I_{D1} and $-I_{D2}$ we obtain:

\[
0 = \mu_n C_{oxn} \frac{W_1}{L_1} \left(V_{IN} - V_{Tn} - \frac{V_{OUT}}{2} \right) V_{OUT}
\]

It can be shown that setting the first product term to 0 will not verify, thus

\[
V_{OUT} = 0
\]

valid for:

\[
V_{GS1} \geq V_{Tn} \quad V_{DS1} < V_{GS1} - V_{Tn} \quad V_{GS2} \geq V_{Tp}
\]

thus, valid for:

\[
V_{IN} \geq V_{Tn} \quad V_{OUT} < V_{IN} - V_{Tn} \quad V_{IN} - V_{DD} \geq V_{Tp}
\]
Transfer characteristics of the static CMOS inverter
(Neglect λ effects)

Case 1 \(M_1 \) triode, \(M_2 \) cutoff

\[V_{\text{out}} = 0 \]
Transfer characteristics of the static CMOS inverter (Neglect λ effects)

Case 1 \(M_1 \) triode, \(M_2 \) cutoff

\[V_{\text{out}} = 0 \]
Review from last time:

Transfer characteristics of the static CMOS inverter
(Neglect λ effects)

Partial solution:
Regions of Operation for Devices in CMOS inverter.
Transfer characteristics of the static CMOS inverter
(Neglect λ effects)

Case 2 M₁ triode, M₂ sat
Transfer characteristics of the static CMOS inverter
(Neglect λ effects)

Case 2 M_1 triode, M_2 sat

$$I_{D1} = \mu_n C_{Ox} \frac{W}{L_1} \left(V_{IN} - V_{Tn} - \frac{V_{OUT}}{2} \right) V_{OUT}$$

$$I_{D2} = -\frac{\mu_p C_{Oxp}}{2} \frac{W}{L_2} \left(V_{IN} - V_{DD} - V_{Tp} \right)^2$$

Equating I_{D1} and $-I_{D2}$ we obtain:

$$\frac{\mu_p C_{Oxp}}{2} \frac{W}{L_2} \left(V_{IN} - V_{DD} - V_{Tp} \right)^2 = \mu_n C_{Ox} \frac{W}{L_1} \left(V_{IN} - V_{Tn} - \frac{V_{OUT}}{2} \right) V_{OUT}$$

valid for:

$$V_{GS1} \geq V_{Tn} \quad V_{DS1} < V_{GS1} - V_{Tn} \quad V_{GS2} \leq V_{Tp} \quad V_{DS2} \leq V_{GS2} - V_{T2}$$

thus, valid for:

$$V_{IN} \geq V_{Tn} \quad V_{OUT} < V_{IN} - V_{Tn} \quad V_{IN} - V_{DD} \leq V_{Tp} \quad V_{OUT} - V_{DD} \leq V_{IN} - V_{DD} - V_{Tp}$$
Transfer characteristics of the static CMOS inverter
(Neglect λ effects)

Case 2 M_1 triode, M_2 sat

$V_{OUT} - V_{DD} \leq V_{IN} - V_{DD} - V_{Tp}$

$V_{IN} \geq V_{Tn}$

$V_{OUT} < V_{IN} - V_{Tn}$

$V_{IN} - V_{DD} \leq V_{Tp}$
Transfer characteristics of the static CMOS inverter
(Neglect λ effects)

Case 2 \hspace{2mm} M_1 \text{ triode, } M_2 \text{ sat}

\begin{align*}
V_{\text{OUT}} - V_{\text{DD}} & \leq V_{\text{IN}} - V_{\text{DD}} - V_{\text{TP}} \\
V_{\text{IN}} & \geq V_{\text{Tn}} \\
V_{\text{OUT}} & < V_{\text{IN}} - V_{\text{Tn}} \\
V_{\text{IN}} - V_{\text{DD}} & \leq V_{\text{TP}}
\end{align*}
Transfer characteristics of the static CMOS inverter

Partial solution:
Transfer characteristics of the static CMOS inverter
(Neglect λ effects)

Case 3 M_1 sat, M_2 sat
Transfer characteristics of the static CMOS inverter
(Neglect λ effects)

Case 3 M_1 sat, M_2 sat

$$I_{D1} = \frac{nC_{Ox}}{2} \frac{W_1}{L_1} (V_{IN} - V_{Tn})^2$$

$$I_{D2} = \frac{pC_{Oxp}}{2} \frac{W_2}{L_2} (V_{IN} - V_{DD} - V_{Tp})^2$$

Equating I_{D1} and $-I_{D2}$ we obtain:

$$\frac{pC_{Oxp}}{2} \frac{W_2}{L_2} (V_{IN} - V_{DD} - V_{Tp})^2 = \frac{nC_{Oxn}}{2} \frac{W_1}{L_1} (V_{IN} - V_{Tn})^2$$

Which can be rewritten as:

$$\sqrt{\frac{pC_{Oxp}}{2} \frac{W_2}{L_2}} (V_{DD} + V_{Tp} - V_{IN}) = \sqrt{\frac{nC_{Oxn}}{2} \frac{W_1}{L_1}} (V_{IN} - V_{Tn})$$

Which can be simplified to:

$$V_{IN} = \frac{(V_{Tn})}{\sqrt{\frac{nC_{Oxn}}{2} \frac{W_1}{L_1}}} + (V_{DD} + V_{Tp}) \sqrt{\frac{pC_{Oxp}}{2} \frac{W_2}{L_2}}$$

This is a vertical line
Transfer characteristics of the static CMOS inverter
(Neglect λ effects)

Case 3 \(M_1\) sat, \(M_2\) sat

\[
V_{IN} = \frac{(V_{Tn}) \sqrt{\frac{\mu_n C_{Ox_n} W_1}{2 L_1}} + (V_{DD} + V_{T_D}) \sqrt{\frac{\mu_p C_{Ox_p} W_2}{2 L_2}}}{\sqrt{\frac{\mu_n C_{Ox_n}}{2 L_1}} + \sqrt{\frac{\mu_p C_{Ox_p}}{2 L_2}}}
\]

Since \(C_{Ox_n} \approx C_{Ox_p} = C_{ox}\) this can be simplified to:

\[
V_{IN} = \frac{(V_{Tn}) \sqrt{\frac{W_1}{L_1}} + (V_{DD} + V_{T_D}) \sqrt{\frac{\mu_p W_2}{\mu_n L_2}}}{\sqrt{\frac{W_1}{L_1}} + \sqrt{\frac{\mu_p W_2}{\mu_n L_2}}}
\]

valid for:

\[
V_{GS1} \geq V_{Tn} \quad V_{DS1} \geq V_{GS1} - V_{Tn} \quad V_{GS2} \leq V_{T_D} \quad V_{DS2} \leq V_{GS2} - V_{T_2}
\]

thus, valid for:

\[
V_{IN} \geq V_{Tn} \quad V_{OUT} \geq V_{IN} - V_{Tn} \quad V_{IN} - V_{DD} \leq V_{T_D} \quad V_{OUT} - V_{DD} \leq V_{IN} - V_{DD} - V_{T_D}
\]
Transfer characteristics of the static CMOS inverter
(Neglect λ effects)

Case 3 M_1 sat, M_2 sat

\[V_{OUT} - V_{DD} \leq V_{IN} - V_{DD} - V_{Tp} \]
\[V_{IN} \geq V_{Tn} \]
\[V_{OUT} \geq V_{IN} - V_{Tn} \]
\[V_{IN} - V_{DD} \leq V_{Tp} \]
Transfer characteristics of the static CMOS inverter
(Neglect λ effects)

Partial solution:
Transfer characteristics of the static CMOS inverter
(Neglect λ effects)

Case 3 \(M_1 \text{ sat}, M_2 \text{ sat} \)

\[
V_{\text{OUT}} - V_{\text{DD}} \leq V_{\text{IN}} - V_{\text{DD}} - V_{\text{TP}} \\
V_{\text{IN}} \geq V_{\text{Tn}} \\
V_{\text{OUT}} \geq V_{\text{IN}} - V_{\text{Tn}} \\
V_{\text{IN}} - V_{\text{DD}} \leq V_{\text{TP}}
\]
Transfer characteristics of the static CMOS inverter
(Neglect λ effects)

Case 4 M_1 sat, M_2 triode
Transfer characteristics of the static CMOS inverter

(Neglect λ effects)

Case 4 \(M_1 \) sat, \(M_2 \) triode

\[
I_{D1} = \frac{\mu_n C_{Ox_n} W_1}{2} \left(V_{IN} - V_{Tn} \right)^2
\]

\[
I_{D2} = -\mu_p C_{Ox_p} \frac{W_2}{L_2} \left(V_{IN} - V_{DD} - V_{Tp} - \frac{V_{OUT} - V_{DD}}{2} \right) \cdot (V_{OUT} - V_{DD})
\]

Equating \(I_{D1} \) and \(-I_{D2} \) we obtain:

\[
\frac{\mu_n C_{Ox_n} W_1}{2} \left(V_{IN} - V_{Tn} \right)^2 = \mu_p C_{Ox_p} \frac{W_2}{L_2} \left(V_{IN} - V_{DD} - V_{Tp} - \frac{V_{OUT} - V_{DD}}{2} \right) \cdot (V_{OUT} - V_{DD})
\]

valid for:

\[
V_{GS1} \geq V_{Tn} \quad V_{DS1} \geq V_{GS1} - V_{Tn} \quad V_{GS2} \leq V_{Tp} \quad V_{DS2} > V_{GS2} - V_{T2}
\]

thus, valid for:

\[
V_{IN} \geq V_{Tn} \quad V_{OUT} \geq V_{IN} - V_{Tn} \quad V_{IN} - V_{DD} \leq V_{Tp} \quad V_{OUT} - V_{DD} > V_{IN} - V_{DD} - V_{Tp}
\]
Transfer characteristics of the static CMOS inverter
(Neglect λ effects)

Case 4 M_1 sat, M_2 triode

\[V_{\text{OUT}} - V_{\text{DD}} > V_{\text{IN}} - V_{\text{DD}} - V_{T_p}, \]
\[V_{\text{IN}} \geq V_{T_n}, \]
\[V_{\text{OUT}} \geq V_{\text{IN}} - V_{T_n}, \]
\[V_{\text{IN}} - V_{\text{DD}} \leq V_{T_p}. \]
Transfer characteristics of the static CMOS inverter
(Neglect \(\lambda \) effects)

Case 4 \(M_1 \) sat, \(M_2 \) triode

\[
\begin{align*}
V_{\text{OUT}} & \geq V_{\text{IN}} - V_{\text{TP}} - V_{\text{DD}} \\
V_{\text{IN}} & \geq V_{Tn} \\
V_{\text{OUT}} & \geq V_{\text{IN}} - V_{Tn} \\
V_{\text{IN}} - V_{\text{DD}} & \leq V_{\text{TP}}
\end{align*}
\]
Transfer characteristics of the static CMOS inverter
(Neglect λ effects)

Partial solution:
Transfer characteristics of the static CMOS inverter
(Neglect λ effects)

Case 4 M_1 cutoff, M_2 triode
Transfer characteristics of the static CMOS inverter
(Neglect λ effects)

Case 5 M_1 cutoff, M_2 triode

$I_{d1} = 0$

$I_{d2} = -\mu_p C_{ox} \frac{W^2}{L^2} \left(V_{IN} - V_{DD} - V_{Tp} - \frac{V_{OUT} - V_{DD}}{2} \right) \bullet (V_{OUT} - V_{DD})$

Equating I_{d1} and $-I_{d2}$ we obtain:

$$\mu_p C_{ox} \frac{W^2}{L^2} \left(V_{IN} - V_{DD} - V_{Tp} - \frac{V_{OUT} - V_{DD}}{2} \right) \bullet (V_{OUT} - V_{DD}) = 0$$

valid for:

$$V_{GS1} < V_{Tn}$$
$$V_{GS2} \leq V_{Tp}$$
$$V_{DS2} > V_{GS2} - V_{T2}$$

thus, valid for:

$$V_{IN} < V_{Tn}$$
$$V_{IN} - V_{DD} \leq V_{Tp}$$
$$V_{OUT} - V_{DD} > V_{IN} - V_{DD} - V_{Tp}$$
Transfer characteristics of the static CMOS inverter
(Neglect λ effects)

Case 5 M_1 cutoff, M_2 triode
Transfer characteristics of the static CMOS inverter
(Neglect \(\lambda \) effects)

Case 5 \(M_1 \) cutoff, \(M_2 \) triode

\[
\begin{align*}
V_{\text{IN}} - V_{\text{DD}} &> V_{\text{IN}} - V_{\text{DD}} - V_{\text{Tp}} \\
V_{\text{IN}} < V_{\text{Tn}} \\
V_{\text{IN}} - V_{\text{DD}} &\leq V_{\text{Tp}}
\end{align*}
\]
Transfer characteristics of the static CMOS inverter
(Neglect λ effects)
Transfer characteristics of the static CMOS inverter
(Neglect λ effects)
Transfer characteristics of the static CMOS inverter
(Neglect λ effects)

From Case 3 analysis:

$$V_{IN} = \frac{(V_{Tn} + (V_{DD} + V_{Tp}) \sqrt{\frac{\mu_p W_2 L_1}{\mu_n W_1 L_2}})}{1 + \sqrt{\frac{\mu_p W_2 L_1}{\mu_n W_1 L_2}}}$$
Inverter Transfer Characteristics of Inverter Pair

\[V_{\text{IN}} \rightarrow V'_{\text{OUT}} \]
Sizing of the Basic CMOS Inverter

How should M_1 and M_2 be sized?

How many degrees of freedom are there in the design of the inverter?
How should M_1 and M_2 be sized?

How many degrees of freedom are there in the design of the inverter?

\[\{ W_1, W_2, L_1, L_2 \} \quad \text{4 degrees of freedom} \]

But in basic device model and in most performance metrics, W_1/L_1 and W_2/L_2 appear as ratios

\[\{ W_1/L_1, W_2/L_2 \} \quad \text{effectively 2 degrees of freedom} \]
How should M_1 and M_2 be sized?

\{ W_1, W_2, L_1, L_2 \} \quad 4 \text{ degrees of freedom} \quad \text{Usually pick } L_1 = L_2 = L_{\text{min}}

\{ W_1/L_1, W_2/L_2 \} \quad \text{effectively 2 degrees of freedom}

How are W_1 and W_2 chosen?

Depends upon what performance parameters are most important for a given application!
How should M_1 and M_2 be sized?

Usually pick $L_1 = L_2 = L_{\text{min}}$

\[
\{ \frac{W_1}{L_1}, \frac{W_2}{L_2} \} \quad \text{2 remaining degrees of freedom}
\]

One popular sizing strategy:
1. Pick $W_1 = W_{\text{MIN}}$ to minimize area of M_1
2. Pick W_2 to set trip-point at $V_{\text{DD}}/2$
How should M_1 and M_2 be sized?

pick $L_1=L_2=L_{\text{min}}$

One popular sizing strategy:
1. Pick $W_1=W_{\text{MIN}}$ to minimize area of M_1
2. Pick W_2 to set trip-point at $V_{DD}/2$

Observe Case 3 provides expression for V_{TRIP}

Thus, at the trip point,

$$V_{\text{OUT}} = V_{\text{IN}} = V_{\text{TRIP}} = \frac{(V_{\text{Tn}}) + (V_{\text{DD}} + V_{\text{Tp}}) \sqrt{\frac{\mu_p W_2 L_1}{\mu_n W_1 L_2}}}{1 + \sqrt{\frac{\mu_p W_2 L_1}{\mu_n W_1 L_2}}}$$
How should M_1 and M_2 be sized?

pick $L_1 = L_2 = L_{\text{min}}$

One popular sizing strategy:
1. Pick $W_1 = W_{\text{MIN}}$ to minimize area of M_1
2. Pick W_2 to set trip-point at $V_{\text{DD}/2}$

Typically $V_{Tn} = 0.2V_{\text{DD}}$, $|V_{Tp}| = 0.2V_{\text{DD}}$

$$V_{\text{TRIP}} = \frac{(V_{Tn}) + (V_{\text{dd}} + V_{Tp}) \sqrt{\frac{\mu_p}{\mu_n} \frac{W_2}{W_1} L_1}}{1 + \sqrt{\frac{\mu_p}{\mu_n} \frac{W_2}{W_1} L_1}}$$

$\therefore \quad \frac{V_{\text{dd}}}{2} = \frac{(0.2V_{\text{dd}}) + (V_{\text{dd}} - 0.2V_{\text{dd}}) \sqrt{\frac{\mu_p}{\mu_n} \frac{W_2}{W_1}}}{1 + \sqrt{\frac{\mu_p}{\mu_n} \frac{W_2}{W_1}}}$

Solving this equation for W_2, obtain

$$W_2 = W_1 \left(\frac{\mu_n}{\mu_p} \right)$$

Other sizing strategies are used as well and will be discussed later!
Extension of Basic CMOS Inverter to Multiple-Input Gates

Performs as a 2-input NOR Gate

Can be easily extended to an n-input NOR Gate

Truth Table

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Extension of Basic CMOS Inverter to Multiple-Input Gates

Performs as a 2-input NAND Gate

Can be easily extended to an n-input NAND Gate

Truth Table

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Static CMOS Logic Family

Observe PUN is p-channel, PDN is n-channel

Pull-up Network PUN
Pull-down Network PDN
Static CMOS Logic Family

n-channel PDN and p-channel PUN
General Logic Family

p-channel PUN
n-channel PDN

Arbitrary PUN and PDN
Other CMOS Logic Families

- Enhancement Load NMOS
- Enhancement Load Pseudo-NMOS
- Depletion Load NMOS
Other CMOS Logic Families

- High and low swings are reduced
- Response time is slow on LH output transitions
- Static Power Dissipation Large when \(V_{OUT} \) is low
- Very economical process
- Termed “ratio logic”
- Compact layout (no wells !)
Other CMOS Logic Families

- Multiple-input gates require single transistor for each additional input
- Still useful if many inputs are required (static power does not increase with k)
Other CMOS Logic Families

- High and low swings are reduced
- Response time is slow on LH output transitions
- Static Power Dissipation Large when V_{OUT} is low
- Termed “ratio” logic
Other CMOS Logic Families

V_{IN}
V_{OUT}
V_{DD}
M_2
M_1

- $V_{TD}<0$
- Low swing is reduced
- Static Power Dissipation Large when V_{OUT} is low
- Very economical process
- Termed “ratio” logic
- Compact layout (no wells!)
- Dominant MOS logic until about 1985
- Depletion device not available in most processes today
Other CMOS Logic Families

- Reduced $V_H - V_L$
- Device sizing critical for even basic operation
- Shallow slope at V_{TRIP}
Other CMOS Logic Families

- Reduced $V_H - V_L$
- Device sizing critical for even basic operation
- Shallow slope at V_{TRIP}
Other CMOS Logic Families

- Reduced $V_H - V_L$
- Device sizing critical for even basic operation
- Shallow slope at V_{TRIP}