Digital Circuits

Static CMOS Logic Gates
- Ratio Logic

Propagation Delay
- Simple analytical models
- Elmore Delay

Sizing of Gates
Digital Circuit Design

- Hierarchical Design
- Basic Logic Gates
- Properties of Logic Families
- Characterization of CMOS Inverter
- Static CMOS Logic Gates
 - Ratio Logic
- Propagation Delay
 - Simple analytical models
 - Elmore Delay
- Sizing of Gates
- Propagation Delay with Multiple Levels of Logic
- Optimal driving of Large Capacitive Loads
- Power Dissipation in Logic Circuits
- Other Logic Styles
- Array Logic
- Ring Oscillators
How should M_1 and M_2 be sized?

pick $L_1 = L_2 = L_{\text{min}}$

One popular sizing strategy:
1. Pick $W_1 = W_{\text{MIN}}$ to minimize area of M_1
2. Pick W_2 to set trip-point at $V_{DD}/2$

Typically $V_{Tn} = 0.2V_{DD}$, $|V_{Tp}| = 0.2V_{DD}$

$$V_{\text{TRIP}} = \frac{(V_{Tn}) + (V_{DD} + V_{Tp}) \sqrt{\mu_p W_2 L_1}}{\mu_n W_1 L_2}$$

$$1 + \sqrt{\frac{\mu_p W_1 L_1}{\mu_n W_2 L_2}}$$

Solving this equation for W_2, obtain

$$W_2 = W_1 \left(\frac{\mu_n}{\mu_p} \right)$$

Other sizing strategies are used as well and will be discussed later!
Extension of Basic CMOS Inverter to Multiple-Input Gates

Performs as a 2-input NOR Gate

Can be easily extended to an n-input NOR Gate

Review from last time

Truth Table

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Other CMOS Logic Families

Review from last time

Enhancement Load NMOS

Enhancement Load Pseudo-NMOS

Depletion Load NMOS
Other CMOS Logic Families

- High and low swings are reduced
- Response time is slow on LH output transitions
- Static Power Dissipation Large when \(V_{\text{OUT}} \) is low
- Very economical process
- Termed “ratio logic” (\(V_H \) or \(V_L \) dependent upon device sizes)
- Compact layout (no wells !)
- Degree of freedom in sizing required to establish \(V_L \)

Review from last time
Other CMOS Logic Families

Review from last time

- High and low swings are reduced
- Response time is slow on LH output transitions
- Static Power Dissipation Large when V_{OUT} is low
- Termed “ratio” logic
Other CMOS Logic Families

Review from last time

- Low swing is reduced
- Static Power Dissipation Large when V_{OUT} is low
- Very economical process
- Termed “ratio” logic
- Compact layout (no wells !)
- Dominant MOS logic until about 1985
- Depletion device not available in most processes today
Review from last time

Propagation Delay in Static CMOS Family

Switch-level model of Static CMOS inverter (neglecting diffusion parasitics)
Review from last time

Propagation Delay in Static CMOS Family

Since operating in triode through most of transition:

\[I_D \approx \frac{\mu C_{OX} W}{L} \left(V_{GS} - V_T - \frac{V_{DS}}{2} \right) V_{DS} \approx \frac{\mu C_{OX} W}{L} (V_{GS} - V_T) V_{DS} \]

\[R_{PD} = \frac{L_1}{\mu_n C_{OX} W_1 (V_{DD} - V_{Tn})} \]

\[I_D = \frac{\mu C_{OX} W}{L} \left(V_{GS} - V_T - \frac{V_{DS}}{2} \right) V_{DS} \approx \frac{\mu C_{OX} W}{L} (V_{GS} - V_T) V_{DS} \]

\[R_{PU} = \frac{L_2}{\mu_p C_{OX} W_2 (V_{DD} + V_{Tp})} \]

\[C_{IN} = C_{OX} \left(W_1 L_1 + W_2 L_2 \right) \]
Review from last time

Propagation Delay in Static CMOS Family

For HL output transition, C_L charged to V_{DD}

![Diagram of CMOS gate and waveforms](image)

Summary:

\[
\begin{align*}
 t_{LH} & \approx R_{PU} C_L \\
 t_{HL} & \approx R_{PD} C_L
\end{align*}
\]
Propagation Delay in Static CMOS Family

In typical process with Minimum-sized M_1 and M_2:

\[t_{HL} \approx R_{PD}C_L \approx 2.5K \cdot 2fF = 5\text{ps} \]

\[t_{LH} \approx R_{PU}C_L \approx 7.5K \cdot 2fF = 15\text{ps} \]

Note: LH transition is much slower than HL transition
Defn: The Propagation Delay of a gate is defined to be the sum of t_{HL} and t_{LH}, that is, $t_{PROP} = t_{HL} + t_{LH}$

$$t_{PROP} = t_{HL} + t_{LH} \approx C_L \left(R_{PU} + R_{PD} \right)$$

Propagation delay represents a fundamental limit on the speed a gate can be clocked.

For basic two-inverter cascade in static CMOS logic

In typical process with minimum-sized M_1 and M_2:

$$t_{PROP} = t_{HL} + t_{LH} \approx 20 \text{ } p \text{sec}$$
The propagation delay through k levels of logic is approximately the sum of the individual delays in the same path.
Propagation Delay in Static CMOS Family

Example:

\[t_{HL} = t_{HL4} + t_{LH3} + t_{HL2} + t_{LH1} \]

\[t_{LH} = t_{LH4} + t_{HL3} + t_{LH2} + t_{HL1} \]

\[t_{PROP} = t_{LH} + t_{HL} = (t_{LH4} + t_{HL3} + t_{LH2} + t_{HL1}) + (t_{HL4} + t_{LH3} + t_{HL2} + t_{LH1}) \]

\[t_{PROP} = t_{LH} + t_{HL} = (t_{LH4} + t_{HL4}) + (t_{LH3} + t_{HL3}) + (t_{LH2} + t_{HL2}) + (t_{LH1} + t_{HL1}) \]

\[t_{PROP} = t_{PROP4} + t_{PROP3} + t_{PROP2} + t_{PROP1} \]
Review from last time

Device Sizing

Strategies?

Degrees of Freedom?

Will consider the inverter first
Review from last time

Device Sizing

- Since not ratio logic, V_H and V_L are independent of device sizes for this inverter
- With $L_1=L_2=L_{\text{min}}$, there are 2 degrees of freedom (W_1 and W_2)

Sizing Strategies

- Minimum Size
- Fixed V_{TRIP}
- Equal rise-fall times (equal worst-case rise and fall times)
- Minimum power dissipation
- Minimum time required to drive a given load
- Minimum input capacitance
Device Sizing

Assume $V_{Tn} = 0.2V_{DD}$, $V_{Tp} = -0.2V_{DD}$, $\mu_n/\mu_p = 3$, $L_1 = L_2 = L_{\text{min}}$

Sizing Strategy: minimum sized

$W_n = ?, W_p$, $V_{\text{trip}} = ?, t_{HL} = ?, t_{LH} = ?, W_1 = W_2 = W_{\text{MIN}}$

also provides minimum input capacitance

t_{LH} is longer than t_{HL}

$t_{HL} = R_{PD}C_L$

$t_{LH} = 3R_{PD}C_L$

$$V_{\text{TRIP}} = \frac{(0.2V_{DD}) + (V_{DD} - 0.2V_{DD})\sqrt{\frac{1}{3}}}{1 + \sqrt{\frac{1}{3}}} = .42V_{DD}$$
Device Sizing

Assume $V_{Tn}=0.2V_{DD}$, $V_{Tp}=-0.2V_{DD}$, $\mu_n/\mu_p=3$, $L_1=L_2=L_{\text{min}}$

Sizing strategy: Equal rise and fall times

$W_n=?$, W_p, $V_{\text{trip}}=?$, $t_{HL}=?$, $t_{LH}=?$

![Diagram of a CMOS inverter]

\[
R_{PD} = \frac{L_{\text{min}}}{\mu_n C_{OX} W_1(0.8V_{DD})}
\]

\[
R_{PU} = \frac{L_{\text{min}}}{3\mu_n C_{OX} W_2(0.8V_{DD})}
\]
Device Sizing

Assume $V_{Tn} = 0.2V_{DD}$, $V_{Tp} = -0.2V_{DD}$, $\mu_n/\mu_p = 3$, $L_1 = L_2 = L_{min}$

Sizing strategy: Equal rise and fall times

Thus

$$V_{TRIP} = ?$$

What about the second degree of freedom?

$$W_2 = \frac{\mu_n}{\mu_p} \frac{L_2}{L_1}$$

with $L_1 = L_2$ and $V_{Tp} = -V_{Tn}$ we must have
Device Sizing

Assume $V_{Tn}=0.2V_{DD}$, $V_{Tp}=-0.2V_{DD}$, $\mu_n/\mu_p=3$, $L_1=L_2=L_{\text{min}}$

Sizing strategy: Equal (worst-case) rise and fall times

$W_n=\?$, W_p, $V_{\text{trip}}=\?$, $t_{HL}=\?$, $t_{LH}=\?$

$$\frac{W_2}{W_1} = \frac{\mu_n}{\mu_p}$$

$$V_{\text{TRIP}} = \frac{\left(V_{Tn}\right)+\left(V_{DD}+V_{Tp}\right)}{\sqrt{\frac{\mu_p W_2 L_1}{\mu_n W_1 L_2}}} = \frac{0.2V_{DD}+0.8V_{DD}}{2} = \frac{V_{DD}}{2}$$

$$t_{HL} = t_{LH} = R_{pd}C_L = \frac{L_{\text{min}}}{\mu_n C_{OX} W_{\text{min}} \left(0.8V_{DD}\right) C_L}$$
Device Sizing

Assume $V_{Tn} = 0.2V_{DD}$, $V_{Tp} = -0.2V_{DD}$, $\mu_n/\mu_p = 3$, $L_1 = L_2 = L_{\text{min}}$

Sizing strategy: Fixed $V_{TRIP} = V_{DD}/2$

W_n, W_p, V_{trip}, t_{HL}, t_{LH}?
Device Sizing

Assume \(V_{Tn} = 0.2V_{DD}, \) \(V_{Tp} = -0.2V_{DD}, \) \(\mu_n / \mu_p = 3, \) \(L_1 = L_2 = L_{\text{min}} \)

Sizing strategy: Fixed \(V_{TRIP} = V_{DD}/2 \)

\[
W_n = ?, W_p, \ V_{trip} = ?, t_{HL} = ?, t_{LH} = ?
\]

Set \(V_{TRIP} = V_{DD}/2 \)

\[
V_{TRIP} = \frac{(0.2V_{dd}) + (V_{dd} - 0.2V_{dd})}{1 + \sqrt{\frac{\mu_p W_2 L_1}{\mu_n W_1 L_2}}} = \frac{V_{dd}}{2}
\]

Solving, obtain

\[
\frac{W_2}{W_1} = \frac{\mu_n}{\mu_p}
\]

Observe this is the same sizing as was obtained for equal worst-case rise and fall times so \(t_{HL} = t_{LH} = R_{pd}C_L \)

This is no coincidence and these properties guide the definition of the process parameters provided by the foundry
Device Sizing

Assume $V_{Tn}=0.2V_{DD}$, $V_{Tp}=-0.2V_{DD}$, $\mu_n/\mu_p=3$, $L_1=L_2=L_{\text{min}}$

Sizing Strategies

- Minimum Size
- Fixed V_{TRIP}
- Equal rise-fall times
 (equal worst-case rise and fall times)
- Minimum power dissipation
- Minimum time required to drive a given load
- Minimum input capacitance
Device Sizing

Assume $V_{Tn} = 0.2V_{DD}$, $V_{Tp} = -0.2V_{DD}$, $\mu_n/\mu_p = 3$, $L_1 = L_2 = L_{\text{min}}$

Sizing Strategy Summary

<table>
<thead>
<tr>
<th>Size</th>
<th>Minimum Size</th>
<th>$V_{\text{TRIP}} = V_{DD}/2$</th>
<th>Equal Rise/Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W_n = W_p = W_{\text{min}}$</td>
<td>$W_n = W_{\text{min}}$</td>
<td>$W_n = W_{\text{min}}$</td>
<td></td>
</tr>
<tr>
<td>$L_p = L_n = L_{\text{min}}$</td>
<td>$W_p = 3W_{\text{min}}$</td>
<td>$W_p = 3W_{\text{min}}$</td>
<td></td>
</tr>
<tr>
<td>$L_p = L_n = L_{\text{min}}$</td>
<td>$L_p = L_n = L_{\text{min}}$</td>
<td>$L_p = L_n = L_{\text{min}}$</td>
<td></td>
</tr>
</tbody>
</table>

- t_{HL}: $R_{pd}C_L$
- t_{LH}: $3R_{pd}C_L$
- t_{PROP}: $4R_{pd}C_L$
- V_{trip}: $V_{\text{TRIP}} = 0.42V_{DD}$

For a fixed load C_L, the minimum-sized structure has a higher t_{PROP} but if the load is another inverter, C_L will also increase so the speed improvements become less apparent.

This will be investigated later.
Reference Inverter

The reference inverter

Assume $\mu_n/\mu_p=3$ $L_n=L_p=L_{MIN}$ $W_n=W_{MIN}$, $W_p=3W_n$

$$C_{REF} = C_{INREF} = 4C_{OX}W_{MIN}L_{MIN}$$

$$R_{PDREF} = \frac{L_{MIN}}{\mu_n C_{OX} W_{MIN} (V_{DD} - V_{Tn})} \quad V_{Tn} \approx 0.2V_{DD}$$

$$= \frac{L_{MIN}}{\mu_n C_{OX} W_{MIN} (0.8V_{DD})}$$

- Have sized the reference inverter with $W_p/W_n=\mu_n/\mu_p$
- In standard processes, provides $V_{TRIP} \approx V_{DD}/2$ and $t_{HL} \approx t_{LH}$
- Any other sizing strategy could have been used for the reference inverter but this is most convenient
Reference Inverter

The reference inverter pair

Assume $\mu_n/\mu_p = 3$ \quad $L_n = L_p = L_{\text{MIN}}$ \quad $W_n = W_{\text{MIN}}$, $W_p = 3W_n$

\begin{align*}
C_{L1} &= C_{\text{REF}} = 4C_{\text{OX}} W_{\text{MIN}} L_{\text{MIN}} \\
t_{\text{REF}} &= t_{\text{PROPREF}} = t_{\text{HLREF}} + t_{\text{LHREF}} = 2R_{\text{PDREF}} C_{\text{REF}}
\end{align*}
Reference Inverter

The reference inverter pair

Assume $\mu_n/\mu_p = 3$
$L_n = L_p = L_{MIN}$
$W_n = W_{MIN}$, $W_p = 3W_n$

Summary: parameters defined from reference inverter:

\[
C_{REF} = 4C_{OX}W_{MIN}L_{MIN} \\
R_{PDREF} = \frac{\mu_n C_{OX}W_{MIN} (V_{DD} - V_{Tn})}{L_{MIN}} \\
t_{REF} = 2R_{PDREF}C_{REF} \\
C_{REF} = 4C_{OX}W_{MIN}L_{MIN}
\]
Propagation Delay

How does the propagation delay compare for a minimum-sized strategy to that of an equal rise/fall sizing strategy?

Minimum Sized
\[W_2 = W_1 = W_{\text{MIN}} \]

Reference Inverter
\[W_2 = \left(\frac{\mu_n}{\mu_p} \right) W_1, \quad W_1 = W_{\text{MIN}} \]

\[t_{\text{PROP}} = t_{\text{REF}} \]
Device Sizing

The minimum-sized inverter pair

\[C_{REF} = 4C_{OX}W_{MIN}L_{MIN} \]

\[C_{L1} = 2C_{OX}W_{MIN}L_{MIN} = 0.5C_{REF} \]

\[R_{PDn} = \frac{L_{MIN}}{\mu_n C_{OX} W_{MIN} (V_{DD} - V_{Tn})} \]

\[V_{Tn} = 2V_{DD} \]

\[R_{PDn} = R_{PDREF} \]

\[R_{PUp} = \frac{L_{MIN}}{\mu_p C_{OX} W_{MIN} (V_{DD} + V_{Tp})} \]

\[V_{Tn} = 2V_{DD} \]

\[3R_{PDREF} \]

\[t_{PROP} = t_{HLREF} + t_{LHREF} = R_{PDREF} (0.5C_{REF}) + 3R_{PDREF} (0.5C_{REF}) = 2R_{PDREF} C_{REF} \]

thus \[t_{PROP} = t_{REFF} \]
Device Sizing

The minimum-sized inverter pair

Assume $\mu_n/\mu_p=3$
$L_n=L_p=L_{MIN}$
$W_n=W_{MIN}$, $W_p=W_n$

$$C_{REF} = 4C_{OX} W_{MIN} L_{MIN}$$

$$C_{L1} = 0.5C_{REF} = 2C_{OX} W_{MIN} L_{MIN}$$

$$R_{PDREF} = \frac{L_{MIN}}{\mu_n C_{OX} W_{MIN} (V_{DD} - V_{Tn})} \quad \frac{V_{Tn}=2V_{DD}}{V_{Tn}=2V_{DD}} = \frac{L_{MIN}}{\mu_n C_{OX} W_{MIN} (0.8V_{DD})}$$

$$t_{PROP} = t_{HLREF} + t_{LHREF} = R_{PDREF} (0.5C_{REF}) + 3R_{PDREF} (0.5C_{REF}) = 2R_{PDREF} C_{REF}$$

$$t_{PROP} = t_{REFF}$$
Propagación del Retraso

¿Cómo se compara el retardo de propagación para un estrategia de tamaño mínimo con respecto a la estrategia de tamaño igual de subida y bajada?

Minimizado Tamaño

\[W_2 = W_1 = W_{\text{MIN}} \]

\[t_{\text{PROP}} = t_{\text{REF}} \]

Inversor de Referencia

\[W_2 = \left(\frac{\mu_n}{\mu_p} \right) W_1, \quad W_1 = W_{\text{MIN}} \]

\[t_{\text{PROP}} = t_{\text{REF}} \]

Incluso aunque el tiempo de subida \(t_{\text{LH}} \) ha sido reducido con la estrategia de subida y bajada igual, esto se hizo al costo de un aumento en la capacitancia total que resultó en no cambio neto en el retardo de propagación!
Will consider now the multiple-input gates

Will consider both minimum sizing and equal **worst-case** rise/fall

Will assume C_L (not shown) =C_{REF}

Note: worst-case has been added since fall time in NOR gates or rise time in NAND gates depends upon how many transistors are conducting
Sizing of Multiple-Input Gates

Analysis strategy: Express delays in terms of those of reference inverter

Reference Inverter

\[C_{\text{REF}} = C_{\text{IN}} = 4C_{\text{OX}} W_{\text{MIN}} L_{\text{MIN}} \]

\[R_{\text{PDREF}} = \frac{L_{\text{MIN}}}{\mu_n C_{\text{OX}} W_{\text{MIN}} (V_{\text{DD}} - V_{\text{Tn}})} \]

\[t_{\text{REF}} = t_{\text{HLREF}} + t_{\text{LHREF}} = 2R_{\text{PDREF}} C_{\text{REF}} \]

\[L_n = L_p = L_{\text{MIN}} \]

In 0.5μm proc, \(t_{\text{REF}} = 20\text{ps}, C_{\text{REF}} = 4\text{fF}, R_{\text{PDREF}} = 2.5\text{K} \)
Device Sizing

Multiple Input Gates:
2-input NOR

Equal Worst Case Rise/Fall (and equal to that of ref inverter when driving C_{REF})

$W_n=\text{?}$
$W_p=\text{?}$

Fastest response = ?
Input capacitance = ?

Minimum Sized (assume driving a load of C_{REF})

$W_n=W_{\text{min}}$
$W_p=W_{\text{min}}$

Fastest response = ?
Slowest response = ?
Input capacitance = ?
Device Sizing

Multiple Input Gates:

2-input NOR

DERIVATIONS
Device Sizing

Multiple Input Gates:

k-input NOR (determine same characteristics as for 2-input NOR)

DERIVATIONS
Device Sizing

Multiple Input Gates:

2-input NAND (determine same characteristics as for 2-input NOR)

DERIVATIONS
Device Sizing

Multiple Input Gates:

k-input NAND (determine same characteristics as for 2-input NOR)

DERIVATIONS
Device Sizing

Multiple Input Gates:

Comparison of NAND and NOR Gates

DERIVATIONS
Device Sizing

Equal Worse-Case Rise/Fall Device Sizing Strategy
-- (same as $V_{\text{TRIP}} = V_{\text{DD}}/2$ in typical process considered in example)
Assume $\mu_n/\mu_p = 3$, $L_n = L_p = L_{\text{MIN}}$

INV
$W_n = W_{\text{MIN}}$, $W_p = 3W_{\text{MIN}}$
$C_{\text{IN}} = C_{\text{REF}}$

k-input NOR
$W_n = W_{\text{MIN}}$, $W_p = 3kW_{\text{MIN}}$
$C_{\text{IN}} = \left(\frac{3k+1}{4}\right)C_{\text{REF}}$

k-input NOR
$W_n = kW_{\text{MIN}}$, $W_p = 3W_{\text{MIN}}$
$C_{\text{IN}} = \left(\frac{3+k}{4}\right)C_{\text{REF}}$
Device Sizing

C_{IN} for N_{AND} gates is considerably smaller than for NOR gates for equal worst-case rise and fall times.

C_{IN} for minimum-sized structures is independent of number of inputs and much smaller than C_{IN} for the equal rise/fall time case.

R_{PU} gets very large for minimum-sized NOR gate.
Propagation Delay in Multiple-Levels of Logic with Stage Loading

DERIVATIONS