Triac Control Using the COP400 Microcontroller Family

Table of Contents

1.0 TRIAC CONTROL

- 1.1 Basic Triac Operation
- 1.2 Triggering
- 1.3 Zero Voltage Detection
- 1.4 Direct Couple
- 1.5 Pulse Transformer Interface
- 1.6 False Turn-on

2.0 SOFTWARE TECHNIQUES

- 2.1 Zero Voltage Detection 2.2 Processing Time Allocations Half Cycle Approach Full Cycle Approach
- 2.3 Steady State Triggering

3.0 TRIAC LIGHT INTENSITY CONTROL CODE

3.1 Triac Light Intensify Routine

National Semiconductor COP Note 6 February 1981

Triac Control Using the COP400 Microcontroller Family

1.0 Triac Control

The COP400 single-chip controller family members provide computational ability and speed which is more than adequate to intelligently manage power control. These controllers provide digital control while low cost and short turnaround enhance COPSTM desirability. The COPS controllers are capable of 4 μ s cycle times which can provide more than adequate computational ability when controlling 60 Hz line voltage. Input and output options available on the COPS devices can contour the device to apply in many electrical situations. A more detailed description of COPS qualifications is available in the COP400 data sheets.

The COPS controller family may be utilized to manage power in many ways. This paper is devoted to the investigation of low cost triac interfaces with the COP400 family microcontroller and software techniques for power control applications.

1.1 BASIC TRIAC OPERATION

A triac is basically a bidirectional switch which can be used to control AC power. In the high-impedance state, the triac blocks the principal voltage across the main terminals. By pulsing the gate or applying a steady state gate signal, the triac may be triggered into a low impedance state where conduction across the main terminals will occur. The gate signal polarity need not follow the main terminal polarity; however, this does affect the gate current requirements. Gate current requirements vary depending on the direction of the main terminal current and the gate current. The four trigger modes are illustrated in *Figure 1*.

шH

FIGURE 1. Gate Trigger Modes. Polarities Referenced to Main Terminal 1.

COPS™ is a trademark of National Semiconductor Corporation

© 1995 National Semiconductor Corporation TL/DD/6939

RRD-B30M105/Printed in U. S. A

The breakover voltage (V_{BO}) is specified with the gate current (I_{GT}) equal to zero. By increasing the gate current supplied to the triac, V_{BO} can be reduced to cause the triac to go into the conduction or on state. Once the triac has entered the on state the gate signal need not be present to sustain conduction. The triac will turn itself off when the main terminal current falls below the minimum holding current required to sustain conduction (I_H).

A typical current and voltage characteristic curve is given in *Figure 2*. As can be seen, when the gate voltage and the main terminal 2 (MT2) voltages are positive with respect to MT1 the triac will operate in quandrant 1. In this case the trigger circuit sources current to the triac (I+MODE).

After conduction occurs the main terminal current is independent of the gate current; however, due to the structure of the triac the gate trigger current is dependent on the direction of the main terminal current. The gate current requirements vary from mode to mode. In general, a triac is more easily triggered when the gate current is in the same direction as the main terminal current. This can be illustrated in the situation where there is not sufficient gate drive to cause conduction when MT2 is both positive and negative. In this case the triac may act as a single direction SCR and conduction occurs in only one direction. The trigger circuit must be designed to provide trigger currents for the worst case trigger situation. Another reason ample trigger current must be supplied is to prevent localized heating within the pellet and speed up turn-on time. If the triac is barely triggered only a small portion of the junction will begin to conduct, thus causing localized heating and slower turn-on. If an insufficient gate pulse is applied damage to the triac may result.

1.2 TRIGGERING

Gate triggering signals should exceed the minimum rated trigger requirements as specified by the manufacturer. This is essential to guarantee rapid turn-on time and consistent operation from device to device. Triac turn-on time is primarily dependent on the magnitude of the applied gate signal. To obtain decreased turn-on times a sufficiently large gate signal should be applied. Faster turn-on time eliminates localized heat spots within the pellet structure and increases triac dependability.

Digital logic circuits, without large buffers, may not have the drive capabilities to efficiently turn on a triac. To insure proper operation in all firing situations, external trigger circuitry might become necessary. Also, to prevent noise from disturbing the logic levels, AC/DC isolation or coupling techniques must be utilized. Sensitive gate triacs which require minimal gate input signal and provide a limited amount of main terminal current may be driven directly. This paper will focus on $120V_{AC}$ applications of power control.

1.3 ZERO VOLTAGE DETECTION

In many applications it is advantageous to switch power at the AC line zero voltage crossing. In doing this, the device being controlled is not subjected to inherent AC transients. By utilizing this technique, greater dependability can be obtained from the switching device and the device being switched. It is also sometimes desirable to reference an event on a cyclic basis corresponding to the AC line frequency. Depending on the load characteristics, switching times need to be chosen carefully to insure optimal performance. Triac controlled AC switching referenced to the AC 60 Hz line frequency enables precise control over the conduction angle at which the triac is fired. This enables the COPS device to control the power output by increasing or decreasing the conduction angle in each half cycle.

A wide variety of zero voltage detection circuits are available in various levels of sophistication. COPS devices, in most cases, can compensate for noisy or semi-accurate ZVD circuits. This compensation is utilized in the form of debounce and delay routines. If a noisy transition occurs near zero volts the COPS device can wait for a valid transition period specified by the maximum amount of noise present. Some software considerations are presented in the software section and are commented upon. The minimal detection circuit is shown in *Fiaure 9*.

1.4 DIRECT COUPLE

Isolation associated problems can be overcome by means of direct AC coupling. One such method is illustrated in *Figure 3*. This circuit incorporates a half-wave rectifier in conjunction with a filter capacitor to provide the logic power supply. The positive half-cycle is allowed to drop across the zener diode and be filtered by the capacitor. This creates a low cost line interface; however, only a limited supply current is available. In order to control the current capabilities of this circuit the series resistor must be modified. However, as more current is required, the power that must be dissipated in the series resistor increases. This increases the power dissipation requirements of the series resistor and the system cost. For applications which require large current source es an alternative method is advisable. In order to assure consistent operation, power supply ripple must be minimized. COPS devices can be operated over a relatively wide power supply range. However, excessive ripple may cause an inadvertent reset operation of the device.

1.5 PULSE TRANSFORMER INTERFACE

Digital logic control of triacs is easily accomplished by triggering through pulse transformers or optical coupling. The energy step-up gained by using a pulse transformer should provide a more than adequate gate trigger signal. This complies with manufacturers' suggested gate signal requirements. Pulse transformers also provide AC/DC isolation necessary in control logic interfaces. Minimal circuit interface to the pulse transformer is required as shown in *Figure 4*. Optical coupling circuits provide isolation, and in some cases adequate gate drive capabilities.

FIGURE 4. Pulse Transformer Interface

A logic controlled pulse is applied to the base of the transistor to switch current through the primary of the pulse transformer. The transformer then transfers the signal to the secondary and causes the triac to fire. The energy transfer that is now available on the secondary is more than adequate to turn on the triac in any of its operating modes. When the pulse transformer is switched off a reverse EMF is generated in the primary coil which may cause damage to the transistor. The diode across the primary serves to protect the collector junction of the switching transistor. Another major advantage is AC isolation; the gate of the triac is now completely isolated from the logic portion of the circuit.

1.6 FALSE TURN-ON

When switching an inductive load, voltage spikes may be generated across the main terminals of the triac which have the potential of a non-gated turn-on of the triac. This creates the undesirable situation of limited control of the system. In a system with an inductive load the voltage leads the current by a phase shift corresponding to the amount of inductance in the motor. As the current passes near zero, the voltage is at a non-zero value, offset due to the phase shift. When the principal current through the triac pellet decreases to a value not capable of sustaining conduction the triac will turn off. At this point in time the voltage across the terminals will instantaneously attain a value corresponding to the phase shift caused by the inductive load. The rapid decay of current in the inductor causes an L dl/dT voltage applied across the terminals of the triac. Should this voltage exceed the blocking voltage specified for the triac, a false turn-on will occur.

In order to avoid false turn-on, a snubber network must be added across the terminals to absorb the excess energy generated by this situation. A common form of this network is a simple RC in series across the terminals. In order to select the values of the network it is necessary to determine the peak voltage allowable in the system and the maximum dV/dT stress the triac can withstand. One approach to obtaining the optimal values for R_S and C_S is to model the effective circuit and solve for the triac voltage. The snubber in conjunction with the load can now be modeled as an RLC network. Due to the two storage elements (L motor, C snubber) a second order differential equation is generated. Rather than approach this problem from a computer standpoint it becomes much easier to obtain design curves generated for rapid solution of this problem. These design curves are available in many triac publications. (For instance, see RCA application note AN 4745.)

2.0 Software Techniques

2.1 ZERO VOLTAGE DETECTION

In order to intelligently control triacs on a cyclic basis, an accurate time base must be defined. This may be in the form of an AC, 60 Hz sync pulse generated by a zero voltage detection circuit or a simple real time clock. The COP400 series microcontrollers are suited to accommodate either of these time base schemes while accomplishing auxiliary tasks.

Zero voltage detection is the most useful scheme in AC power control because it affords a real time clock base as well as a reference point in the AC waveform. With this information it is possible to minimize RFI by initiating poweron operations near the AC line voltage zero crossing. It is also possible to fire the triac for only a portion of the cycle, thus utilizing conduction angle manipulation. This is useful in both motor control and light intensity control.

Sophisticated zero voltage detection circuits which are capable of discriminating against noise and switch precisely at zero crossing are not necessary when used in conjunction with a COPS device. COPS software is capable of compensating for noisy or semi-accurate zero voltage detection circuits. This can be accomplished by introducing delays and debounce techniques in the software routines. With a given reference point in the AC waveform it now becomes easy to divide the waveform to efficiently allocate processing time. These techniques are illustrated in the code listing at the end of this paper.

FIGURE 5. Current Lag Caused by Inductive Load, Snubber Circuit

2.2 PROCESSING TIME ALLOCATIONS

Half Cycle Approach

In order to accomplish more than triac timing, dead delay time must be turned into computation time. It appears that the controller is occupied totally by time delays, which leaves a very limited amount of additional control capability. There are, however, many ways to accomplish auxiliary tasks simultaneously.

On each half cycle an initial delay is incorporated to space into the cycle. This dead time may be put to use and very little voltage to the load is sacrificed. For example, if the load is switched on at $\pi/4$ RAD, the maximum applied RMS voltage to the load is 114V_{RMS} (assuming V_{SUPLY} = 120V_{RMS}). This is illustrated in the figure below.

FIGURE 6. Full Cycle Approach

TL/DD/6939-6

If a delay of $\pi/4$ RAD (45 degrees) is inserted after each zero crossing detection the RMS voltage to the load can be determined in the following manner:

$$V_{\text{LOAD}} = \sqrt{\frac{(120 \sqrt{2})^2}{(2) \pi}} (2) \int_{\pi/4}^{\pi} \sin^2 (a) \, da$$
$$V_{\text{LOAD}} = \sqrt{\frac{(120 \sqrt{2})^2}{(2) \pi}} (2) (1.428)$$
$$V_{\text{LOAD}} = 114.4 \, \text{V}_{\text{RMS}}$$
$$\pi/4 \, \text{RAD} = 45 \, \text{degrees} \quad @60 \, \text{Hz} \quad t = 2.08$$

As can be seen the dead time on each half cycle can be 2.08 ms and the load will still see 114.4 V_{RMS} of a V_{SUPPLY} of 120 V_{RMS}. If this approach is implemented the initial delay of 2.08 ms can be used as computation time. The number of instructions which can be executed when operating at 4 μ s instruction cycle time is:

2.08 ms/4 μ s = 520 instructions (130 instructions at 16 μ s cycle time)

Full Cycle Approach

The methods of half cycle and full cycle triggering are very similar in procedure. The main difference is that all timing is referenced from only one (of the two) zero voltage detection transition in each full AC cycle. For most all applications, when varying the conduction angle it is desirable to fire at the same conduction angle each half cycle to maintain a symmetric applied voltage. In order to accomplish this the triac may be fired twice from one reference point. When applying this technique an 8.33 ms delay must be executed to maintain the symmetric applied voltage. This approach provides the most auxiliary computation at time. The basic flow for this technique is illustrated below.

TL/DD/6939-7

ms

FIGURE 7. Full Cycle Approach

In the above example the zero crossing pulse is debounced on the one-to-zero transition, thus marking the beginning of a full cycle. Once this transition has been detected, an ini-

FIGURE 8. Steady State Triggering

tial delay of $\pi/4$ RAD is incorporated and the triac is fired. At this time exactly 8.33 ms is available until the triac need be triggered again. This will provide a symmetric voltage to the load only if the delay is 8.33 ms. During this period the number of instructions which can be executed when operating at 4 µs is:

$8.33 \text{ ms}/4 \ \mu \text{s} = 2082$

(520 instructions at 16 µs)

An alternative approach may be to take the burden from the COPS device by using peripheral devices such as static display controllers, external latches, etc.

2.3 STEADY STATE TRIGGERING

It is possible to trigger a triac with a steady state logic level. This is accomplished by allowing the triac gate to sink or source current during the desired on-time. When utilizing this method it becomes easier to trigger the triac and leave it on for many cycles without having to execute code to retrigger. This approach is advantageous when the triac must be fired is for relatively long periods and conduction angle firing is not desired, thus more time is available to accomplish auxiliary tasks. A steady state on or off signal and external circuitry can accomplish triac firing and free the processor for other tasks. If it is desired to use a pulse

transformer, an external oscillator must be gated to the triac to provide the trigger signal. A pulse train of 10 to 15 kHz is adequate to fire the triac each half cycle. This calls for external components and is relatively costly. If isolation associated problems can be tolerated or overcome (dual power supply transformers, direct AC coupling, etc.), a simple buffer may be utilized in triggering the triac. This method is illustrated in Figure 8. The National Semiconductor DS8863 display driver is capable of steady state firing of the triac. National offers many buffers capable of driving several hundred milliamps, which are suitable for driving triacs. On the market today there are many suppliers of sensitive gate triacs which may be triggered directly from a COPS device or in conjunction with a smaller external buffer.

The DS8863 display driver is capable of sinking up to 500 mA, which is adequate to drive a standard triac. In the off state the driver will not sink current. When a logic "1" is applied to the input the device will turn on. Keeping the device off (output "1") will prevent the triac from turning on because the buffer does not have the capability of sourcing current. A series resistor limits the current from the triac gate and the diode isolates the negative spikes from the gate. Since the drive circuit will only sink current in this configuration, the triac will be operating in the I- and III- modes.

3.0 Triac Light Intensity Control Code

The following code is not intended to be a final functional program. In order to utilize this program, modifications must be made to specialize the routines. This is intended to illustrate the method and is void of control code to command a response such as intensify or deintensify. The control is up to the user and full understanding of the program must be attained before modifications can be implemented.

This program is a general purpose light intensifying routine which may be modified to suit light dimmer applications. The delay routines require a 4.469 μs cycle time which can be attained with a 3.578 MHz crystal (CKI/16 option). This program divides the half cycle of a 60 Hz power line into 16 levels. Intensity is varied by increasing or decreasing the conduction angle by firing the triac at various levels. The program will increase the conduction angle to a maximum specified intensity in a fixed amount of time. The time required to intensity to the maximum level is dependent on the number of fire-times per level that is specified (FINO). This code illustrates a half cycle approach and relies on the parameters specified by the programmer in the control selection.

Zero crossings of the 60 Hz line are detected and software debounced to initiate each half cycle; thus the triac is serviced on every half cycle of the power line. A level/sublevel approach is utilized to vary the conduction angle and provide a prolonged intensifying period. The maximum intensity is specified by the "LEVEL" RAM location and time required to get to that level is specified by the "FINO" RAM location.

Once a level has been specified, the remaining time in the half cycle is then divided into sublevels. The sublevels are increased in steps to the maximum level. The "FINO" RAM location contains the number of times that the triac will be fired per sublevel, thus creating the intensity time base. There are 15 valid sublevels and up to 15 fire-times per sublevel. Both these parameters may be increased to provide better resolution and longer intensify periods. To make the triac de-intensity (dim) the sublevels need only to be decremented rather than incremented. If this is done, the conduction angle will start out at the maximum level and dim by means of stepping down the sublevels. When modifying this routine to incorporate more resolution or increased versatility, care must be taken to account for transfer of control instructions to and from the delay routines.

The following is a schematic diagram of the COPS interface to $120V_{AC}$ lamps. The program will intensify or de-intensify the lamps under program control.

3.1 TRIAC LIGHT INTENSIFY ROUTINE

This program intensifies a light source by varying the conduction angle applied to the load. The maximum level of intensity is stored in "LEVEL," and the time to get to that level is specified by "FIND." Both these parameters may be altered to suit specific applications. To cause the program to de-intensify the light source, the sublevels must be decremented rather than incremented.

	HT INTENSIFY I	ROUTINE		DELL:	JP CLRA	LO	; FALSE ALARM, TRY AGAIN ; DO A DELAY TO COMPENSATE	
				DEL:	NOP			
				DEL.				
; THIS PROGRAM INTENSIFIES A LIGHT SOURCE BY VARYING THE					NOP		; FOR NON SYMMETRIC ZC	
			LOAD. THE MAX LEVEL		NOP			
OF INTENS	SITY IS STORED) IN 'LEVEL' A	ND THE TIME TO GET TO		AISC			
THAT LEV	EL IS SPECIFIED	DBY 'FIND'. B	OTH THESE PARAMETERS		JP	DEL	; KEEP DELAY GOING	
MAY BE A	LTERED TO SUI	T SPECIFIC A	PPLICATIONS. TO CAUSE		JP	DOIT	; GO TO MAIN ROUTINE	
THE PROG	BRAM TO DE-IN	TENSIEY THE	LIGHT SOURCE, THE					
	LS MUST BE DE				.FORM			
INCREMEN	NIED.				.PAGE	1		
				;				
				;				
	TEMP1	=1,0	; TEMPORARY DELAY COUNTER				NTENSIFY/DE-INTENSIFY	
	FIND	=0,9	; NUMBER OF FIRE TIMES	; OPERATIC	NS. TRANSFE	R OF CONTRO	L TO THIS SECTION	
	LEVEL	=0,0	; MAX LEVEL	; OCCURS A	FTER ZERO V	OLTAGE CROS	SING EACH HALF CYCLE.	
	SUBLEV	=1,10	; SUBLEVEL COUNT	; THIS MAKE USE OF TEMP REGISTERS THUS PARAMETERS				
	TEMP	=1,11	; TEMPORARY DELAY COUNTER	; NEED NOT	BE REDEFINE	ED FOR EACH C	OPERATION.	
				;				
HERE THE	OPERATING P	ARAMETERS	ARE DEFINED AND LEVEL	;				
	N IS SPECIFIED			INT:	CLRA			
					ADT		; DELAY INTO WAVEFORM	
	FORM					TEMP		
	.FORM				LBI	TEMP	; USE TEMP REG	
	.PAGE	0			х			
	CLRA		; REQUIRED		JSRP	PORT	; DO DELAY	
CLRAM:	LBI	3,15	; ROUTINE TO CLEAR ALL RAM	POINT:	LDD	LEVEL	; POINT TO LEVEL TO INITIATE	
CLR;	CLRA						; DELAY	
	XDS						; DELAY TO MAX LEVEL	
	JP	CLR			XAD	TEMP	; USE TEMP DIGIT TO DELAY	
	XABR	OLA		TAMP:	LBI	TEMP	, SOL TENI DIGIT TO DELAT	
				TAMP:		TEMP		
	AISC	15			LD			
	JP	BEGG			AISC	15	; ARE WE AT THE LEVEL ?	
	XABR				JP	ATLEV	; MADE IT TO THE LEVEL	
	JP	CLR			х		; NO	
					JSRP	DE5	; DO SERIES OF .5MS TO GET	
THIS SECT	TION INITIATES	CONTROL OF	POWER UP OR RESET				; THERE	
			CE TO THE 60 HZ AC LINE		JP	TAMP	; KEEP DOING IT	
							, ALLE DOINGHT	
				ATLEV:	LDD	SUBLEV	; AT MAX FIRE LEVEL	
	OGI	15	; OUTPUT 15 TO G PORTS TO PULL			SUBLEV TEMP	; AT MAX FIRE LEVEL ; INIT FOR SUBLEVEL DELAY	
	OGI	15	; OUTPUT 15 TO G PORTS TO PULL ; UP ZERO CROSSER INPUT	ATLEV: JK:	LDD	SUBLEV		
	OGI LBI	15 LEVEL			LDD XAD	SUBLEV TEMP		
			; UP ZERO CROSSER INPUT		LDD XAD LBI	SUBLEV TEMP		
	LBI STII	LEVEL	; UP ZERO CROSSER INPUT ; SPECIFY MAX LEVEL		LDD XAD LBI LD AISC	SUBLEV TEMP TEMP 1	; INIT FOR SUBLEVEL DELAY ; AT SUB LEVEL ?	
BEGG:	LBI STII JSR	LEVEL 7 OUT	; UP ZERO CROSSER INPUT ; SPECIFY MAX LEVEL ; COPY TO TEMP1		LDD XAD LBI LD AISC JP	SUBLEV TEMP TEMP 1 TRE	; INIT FOR SUBLEVEL DELAY ; AT SUB LEVEL ? ; NO DO DELAY	
BEGG:	LBI STII JSR SKGBZ	LEVEL 7 OUT 0	; UP ZERO CROSSER INPUT ; SPECIFY MAX LEVEL ; COPY TO TEMP1 ; SYNC UP TO 60 HZ	JK:	LDD XAD LBI LD AISC JP JP	SUBLEV TEMP TEMP 1	; INIT FOR SUBLEVEL DELAY ; AT SUB LEVEL ?	
BEGG:	LBI STII JSR SKGBZ JP	LEVEL 7 OUT 0 HI	; UP ZERO CROSSER INPUT ; SPECIFY MAX LEVEL ; COPY TO TEMP1 ; SYNC UP TO 60 HZ ; READY NOW		LDD XAD LBI LD AISC JP JP X	SUBLEV TEMP 1 TRE SBLEV	; INT FOR SUBLEVEL DELAY ; AT SUB LEVEL ? ; NO DO DELAY ; YES	
BEGG:	LBI STII JSR SKGBZ	LEVEL 7 OUT 0	; UP ZERO CROSSER INPUT ; SPECIFY MAX LEVEL ; COPY TO TEMP1 ; SYNC UP TO 60 HZ	JK:	LDD XAD LBI LD AISC JP JP X JSRP	SUBLEV TEMP 1 TRE SBLEV SPDL	; INIT FOR SUBLEVEL DELAY ; AT SUB LEVEL ? ; NO DO DELAY	
BEGG: BEG:	lbi Stii JSR Skgbz JP JP	LEVEL 7 OUT 0 HI BEG	; UP ZERO CROSSER INPUT ; SPECIFY MAX LEVEL ; COPY TO TEMP1 ; SYNC UP TO 60 HZ ; READY NOW ; WAIT TILL G IS 1	JK:	LDD XAD LBI LD AISC JP JP X	SUBLEV TEMP 1 TRE SBLEV SPDL JK	; INT FOR SUBLEVEL DELAY ; AT SUB LEVEL ? ; NO DO DELAY ; YES	
BEGG: BEG:	lbi Stii JSR Skgbz JP JP	LEVEL 7 OUT 0 HI BEG	; UP ZERO CROSSER INPUT ; SPECIFY MAX LEVEL ; COPY TO TEMP1 ; SYNC UP TO 60 HZ ; READY NOW	JK:	LDD XAD LBI LD AISC JP JP X JSRP	SUBLEV TEMP 1 TRE SBLEV SPDL	; INT FOR SUBLEVEL DELAY ; AT SUB LEVEL ? ; NO DO DELAY ; YES	
BEGG: BEG: THIS SECT	LBI STII JSR SKGBZ JP JP TION PROVIDES	LEVEL 7 OUT 0 HI BEG	; UP ZERO CROSSER INPUT ; SPECIFY MAX LEVEL ; COPY TO TEMP1 ; SYNC UP TO 60 HZ ; READY NOW ; WAIT TILL G IS 1	JK: TRE:	LDD XAD LBI LD AISC JP JP X JSRP JP	SUBLEV TEMP 1 TRE SBLEV SPDL JK	; INT FOR SUBLEVEL DELAY ; AT SUB LEVEL ? ; NO DO DELAY ; YES	
BEGG: BEG: THIS SECT VOLTAGE	LBI STII JSR SKGBZ JP JP TION PROVIDES	LEVEL 7 OUT 0 HI BEG THE DEBOU	; UP ZERO CROSSER INPUT ; SPECIFY MAX LEVEL ; COPY TO TEMP1 ; SYNC UP TO 60 HZ ; READY NOW ; WAIT TILL G IS 1 NCE FOR THE ZERO	JK: TRE:	LDD XAD LBI LD AISC JP JP X JSRP JP LBI	SUBLEV TEMP TEMP 1 TRE SBLEV SPDL JK FIND	; INT FOR SUBLEVEL DELAY ; AT SUB LEVEL ? ; NO DO DELAY ; YES ; VARIABLE DELAY	
BEGG: BEG: THIS SECT VOLTAGE	LBI STII JSR SKGBZ JP JP TION PROVIDES DETECTION INI	LEVEL 7 OUT 0 HI BEG THE DEBOU	; UP ZERO CROSSER INPUT ; SPECIFY MAX LEVEL ; COPY TO TEMP1 ; SYNC UP TO 60 HZ ; READY NOW ; WAIT TILL G IS 1 NCE FOR THE ZERO	JK: TRE:	LDD XAD LBi LD AISC JP JP X JSRP LBi JSRP AISC	SUBLEV TEMP 1 TRE SBLEV SPDL JK FIND DEC 1	; INIT FOR SUBLEVEL DELAY ; AT SUB LEVEL ? ; NO DO DELAY ; YES ; VARIABLE DELAY ; DEC FIRE NUMBER ; TEST IF FIND AT 15	
BEGG: BEG: THIS SECT VOLTAGE OFFSET O	LBI STIII JSR SKGBZ JP JP TION PROVIDES DETECTION INI IOF THE DETECTI	LEVEL 7 OUT 0 HI BEG THE DEBOU PUT AND COM	; UP ZERO CROSSER INPUT ; SPECIFY MAX LEVEL ; COPY TO TEMP1 ; SYNC UP TO 60 HZ ; READY NOW ; WAIT TILL G IS 1 NCE FOR THE ZERO IMPENSATES FOR THE	JK: TRE: SBLEV:	LDD XAD LBI LD AISC JP X JSRP LBI JSRP AISC JMP	SUBLEV TEMP TEMP 1 TRE SBLEV SPDL JK FIND DEC 1 FIRE	; INIT FOR SUBLEVEL DELAY ; AT SUB LEVEL ? ; NO DO DELAY ; YES ; VARIABLE DELAY ; DEC FIRE NUMBER ; TEST IF FIND AT 15 ; NO KEEP FIRING AT THAT LEV	
BEGG: BEG: THIS SECT VOLTAGE OFFSET O	LBI STII JSR SKGBZ JP JP TION PROVIDES DETECTION INI OF THE DETECTI	LEVEL 7 OUT 0 HI BEG THE DEBOU PUT AND CON ION CIRCUIT	; UP ZERO CROSSER INPUT ; SPECIFY MAX LEVEL ; COPY TO TEMP1 ; SYNC UP TO 60 HZ ; READY NOW ; WAIT TILL G IS 1 NCE FOR THE ZERO MPENSATES FOR THE ; TEST GO FOR ZERO CROSS	JK: TRE: SBLEV:	LDD XAD LBI LD AISC JP JP X JSRP LBI JSRP AISC JMP LBI	SUBLEV TEMP 1 TRE SBLEV SPDL JK FIND DEC 1	; INIT FOR SUBLEVEL DELAY ; AT SUB LEVEL ? ; NO DO DELAY ; YES ; VARIABLE DELAY ; DEC FIRE NUMBER ; TEST IF FIND AT 15	
BEGG: THIS SECT VOLTAGE OFFSET O HI:	LBI STII JSR SKGBZ JP JP TION PROVIDES DETECTION INI PF THE DETECTI SKGBZ JP	LEVEL 7 OUT 0 HI BEG THE DEBOU PUT AND COM ION CIRCUIT 0 HI	; UP ZERO CROSSER INPUT ; SPECIFY MAX LEVEL ; COPY TO TEMP1 ; SYNC UP TO 60 HZ ; READY NOW ; WAIT TILL G IS 1 NCE FOR THE ZERO IMPENSATES FOR THE	JK: TRE: SBLEV:	LDD XAD LBI LD AISC JP X JP X JSRP LBI JSRP AISC JMP LBI CLRA	SUBLEV TEMP TEMP 1 TRE SBLEV SPDL JK FIND DEC 1 FIRE SUBLEV	; INIT FOR SUBLEVEL DELAY ; AT SUB LEVEL ? ; NO DO DELAY ; YES ; VARIABLE DELAY ; DEC FIRE NUMBER ; TEST IF FIND AT 15 ; NO KEEP FIRING AT THAT LEV ; YES INC SUBLEVEL	
BEGG: DEG: THIS SECT VOLTAGE OFFSET O 4I:	LBI STII JSR SKGBZ JP JP TION PROVIDES DETECTION INI PF THE DETECTION SKGBZ JP RE ON FIRST TR	LEVEL 7 OUT 0 HI BEG THE DEBOU PUT AND COM ION CIRCUIT 0 HI	; UP ZERO CROSSER INPUT ; SPECIFY MAX LEVEL ; COPY TO TEMP1 ; SYNC UP TO 60 HZ ; READY NOW ; WAIT TILL G IS 1 NCE FOR THE ZERO MPENSATES FOR THE ; TEST GO FOR ZERO CROSS ; HIGH LEVEL	JK: TRE: SBLEV:	LDD XAD LBI LD AISC JP JP X JP LBI JSRP AISC JMP LBI CLRA AISC	SUBLEV TEMP TEMP 1 TRE SBLEV SPDL JK FIND DEC 1 FIRE	; INIT FOR SUBLEVEL DELAY ; AT SUB LEVEL ? ; NO DO DELAY ; YES ; VARIABLE DELAY ; DEC FIRE NUMBER ; TEST IF FIND AT 15 ; NO KEEP FIRING AT THAT LEV	
BEGG: THIS SECT VOLTAGE OFFSET O HI:	LBI STII JSR SKGBZ JP JP TION PROVIDES DETECTION INI PF THE DETECTI SKGBZ JP	LEVEL 7 OUT 0 HI BEG THE DEBOU PUT AND COM ION CIRCUIT 0 HI	; UP ZERO CROSSER INPUT ; SPECIFY MAX LEVEL ; COPY TO TEMP1 ; SYNC UP TO 60 HZ ; READY NOW ; WAIT TILL G IS 1 NCE FOR THE ZERO MPENSATES FOR THE ; TEST GO FOR ZERO CROSS	JK: TRE: SBLEV:	LDD XAD LBI LD AISC JP X JP X JSRP LBI JSRP AISC JMP LBI CLRA	SUBLEV TEMP TEMP 1 TRE SBLEV SPDL JK FIND DEC 1 FIRE SUBLEV	; INIT FOR SUBLEVEL DELAY ; AT SUB LEVEL ? ; NO DO DELAY ; YES ; VARIABLE DELAY ; DEC FIRE NUMBER ; TEST IF FIND AT 15 ; NO KEEP FIRING AT THAT LEV ; YES INC SUBLEVEL	
BEGG: THIS SECT VOLTAGE OFFSET O HI:	LBI STII JSR SKGBZ JP JP TION PROVIDES DETECTION INI PF THE DETECTION SKGBZ JP RE ON FIRST TR	LEVEL 7 OUT 0 HI BEG THE DEBOU PUT AND COM ION CIRCUIT 0 HI	; UP ZERO CROSSER INPUT ; SPECIFY MAX LEVEL ; COPY TO TEMP1 ; SYNC UP TO 60 HZ ; READY NOW ; WAIT TILL G IS 1 NCE FOR THE ZERO MPENSATES FOR THE ; TEST GO FOR ZERO CROSS ; HIGH LEVEL	JK: TRE: SBLEV:	LDD XAD LBI LD AISC JP JP X JP LBI JSRP AISC JMP LBI CLRA AISC	SUBLEV TEMP TEMP 1 TRE SBLEV SPDL JK FIND DEC 1 FIRE SUBLEV	; INIT FOR SUBLEVEL DELAY ; AT SUB LEVEL ? ; NO DO DELAY ; YES ; VARIABLE DELAY ; DEC FIRE NUMBER ; TEST IF FIND AT 15 ; NO KEEP FIRING AT THAT LEV ; YES INC SUBLEVEL	
BEGG: DEG: THIS SECT VOLTAGE OFFSET O 4I:	LBI STIII JSR SKGBZ JP JP TION PROVIDES DETECTION INI OF THE DETECTI SKGBZ JP RE ON FIRST TR CLRA	LEVEL 7 OUT 0 HI BEG THE DEBOU 2UT AND CON ON CIRCUIT 0 HI ANSITION	; UP ZERO CROSSER INPUT ; SPECIFY MAX LEVEL ; COPY TO TEMP1 ; SYNC UP TO 60 HZ ; READY NOW ; WAIT TILL G IS 1 NCE FOR THE ZERO MPENSATES FOR THE ; TEST GO FOR ZERO CROSS ; HIGH LEVEL	JK: TRE: SBLEV:	LDD XAD LBI LD AISC JP JP X JSRP JP LBI JSRP AISC JMP LBI CLRA AISC SKE	SUBLEV TEMP TEMP 1 TRE SBLEV SPDL JK FIND DEC 1 FIRE SUBLEV 14	; INIT FOR SUBLEVEL DELAY ; AT SUB LEVEL ? ; NO DO DELAY ; YES ; VARIABLE DELAY ; DEC FIRE NUMBER ; TEST IF FIND AT 15 ; NO KEEP FINING AT THAT LEV ; YES INC SUBLEVEL ; IS MAX SUBLEV REACHED	
BEGG: THIS SECT VOLTAGE OFFSET O HI: GETS HEF	LBI STII JSR SKGBZ JP JP TION PROVIDES DETECTION INI OF THE DETECTION SKGBZ JP RE ON FIRST TR CLRA AISC JP	LEVEL 7 OUT 0 HI BEG OUT AND COM ON CIRCUIT 0 HI ANSITION 1 1	; UP ZERO CROSSER INPUT ; SPECIFY MAX LEVEL ; COPY TO TEMP1 ; SYNC UP TO 60 HZ ; READY NOW ; WAIT TILL G IS 1 NCE FOR THE ZERO MPENSATES FOR THE ; TEST GO FOR ZERO CROSS ; HIGH LEVEL	JK: TRE: SBLEV: MAXLEV:	LDD XAD LBI LD AISC JP X JSRP JP LBI JSRP LBI CLRA AISC SKE JP JP	SUBLEV TEMP TEMP 1 TRE SBLEV SPDL JK FIND DEC 1 FIRE SUBLEV 14 THERE MAXLEV	; INIT FOR SUBLEVEL DELAY ; AT SUB LEVEL ? ; NO DO DELAY ; YES ; VARIABLE DELAY ; DEC FIRE NUMBER ; TEST IF FIND AT 15 ; NO KEEP FIRING AT THAT LEV ; YES INC SUBLEVEL ; IS MAX SUBLEV REACHED ; NO INC SUBLEV ; YES FIRE IT	
BEGG: THIS SECT VOLTAGE OFFSET O HI: GETS HEF	LBI STII JSR SKGBZ JP JP TION PROVIDES DETECTION INI OF THE DETECTION SKGBZ JP RE ON FIRST TR CLRA AISC JP	LEVEL 7 OUT 0 HI BEG THE DEBOU PUT AND COM ON CIRCUIT 0 HI ANSITION 1 1 STILL 0	; UP ZERO CROSSER INPUT ; SPECIFY MAX LEVEL ; COPY TO TEMP1 ; SYNC UP TO 60 HZ ; READY NOW ; WAIT TILL G IS 1 NCE FOR THE ZERO MPENSATES FOR THE ; TEST GO FOR ZERO CROSS ; HIGH LEVEL ; START OF DEBOUNCE DELAY	JK: TRE: SBLEV:	LDD XAD LBI JP JP X JSRP JP LBI JSRP AISC JMP LBI CLRA AISC SKE JP JP JSRP	SUBLEV TEMP TEMP 1 TRE SBLEV SPDL JK FIND DEC 1 FIND DEC 1 FIRE SUBLEV 14 THERE MAXLEV INC	; INIT FOR SUBLEVEL DELAY ; AT SUB LEVEL ? ; NO DO DELAY ; YES ; VARIABLE DELAY ; DEC FIRE NUMBER ; TEST IF FIND AT 15 ; NO KEEP FINING AT THAT LEV ; YES INC SUBLEVEL ; IS MAX SUBLEV REACHED ; NO INC SUBLEV	
BEGG: THIS SECT VOLTAGE OFFSET O HI: GETS HEF	LBI STII JSR SKGBZ JP JP TION PROVIDES DETECTION INI OF THE DETECTION SKGBZ JP THE ON FIRST TR CLRA AISC JP TLE DELAY, IS IT SKGBZ	LEVEL 7 OUT 0 HI BEG THE DEBOU PUT AND CON ON CIRCUIT 0 HI ANSITION 1 1 STILL 0 0	; UP ZERO CROSSER INPUT ; SPECIFY MAX LEVEL ; COPY TO TEMP1 ; SYNC UP TO 60 HZ ; READY NOW ; WAIT TILL G IS 1 VCE FOR THE ZERO MPENSATES FOR THE ; TEST GO FOR ZERO CROSS ; HIGH LEVEL ; START OF DEBOUNCE DELAY ; TEST FOR 0	JK: TRE: SBLEV: MAXLEV:	LDD XAD LBI LD AISC JP JP X JSRP JP LBI JSRP AISC JMP LBI CLRA AISC SKE JP JP LBI LBI	SUBLEV TEMP TEMP 1 TRE SBLEV SPDL JK FIND DEC 1 FIRE SUBLEV 14 THERE MAXLEV INC FIND	; INIT FOR SUBLEVEL DELAY ; AT SUB LEVEL ? ; NO DO DELAY ; YES ; VARIABLE DELAY ; DEC FIRE NUMBER ; TEST IF FIND AT 15 ; NO KEEP FIRING AT THAT LEV ; YES INC SUBLEVEL ; IS MAX SUBLEV REACHED ; NO INC SUBLEV ; YES FIRE IT ; GO TO NEXT SUBLEVEL	
BEGG: THIS SECT VOLTAGE OFFSET O HI: GETS HEF DID A LITT	LBI STIII JSR SKGBZ JP JP TION PROVIDES DETECTION INI DETECTION INI DETECTION INI SKGBZ JP TLE DELAY, IS IT SKGBZ JP	LEVEL 7 OUT 0 HI BEG UT AND CON ON CIRCUIT 0 HI ANSITION 1 1 STILL 0 0 HI	; UP ZERO CROSSER INPUT ; SPECIFY MAX LEVEL ; COPY TO TEMP1 ; SYNC UP TO 60 HZ ; READY NOW ; WAIT TILL G IS 1 NCE FOR THE ZERO APENSATES FOR THE ; TEST GO FOR ZERO CROSS ; HIGH LEVEL ; START OF DEBOUNCE DELAY ; TEST FOR 0 ; FALSE ALARM	JK: TRE: SBLEV: MAXLEV:	LDD XAD LBI LD AISC JP JP X JSRP JP LBI CLRA AISC SKE JP JP JP LBI CLRA AISC SKE JP JP STI	SUBLEV TEMP TEMP 1 TRE SBLEV JK FIND DEC 1 FIRE SUBLEV 14 THERE MAXLEV INC FIND 14	; INIT FOR SUBLEVEL DELAY : AT SUB LEVEL ? ; NO DO DELAY ; YES ; VARIABLE DELAY : DEC FIRE NUMBER ; TEST IF FIND AT 15 ; NO KEEP FINING AT THAT LEV ; YES INC SUBLEVEL ; IS MAX SUBLEV REACHED ; NO INC SUBLEV ; YES FIRE IT ; GO TO NEXT SUBLEVEL ; SET FIRE TIME	
BEGG: THIS SECT VOLTAGE OFFSET O HI: GETS HEF DID A LITT MUST HAV	LBI STIII JSR SKGBZ JP JP TION PROVIDES DETECTION INI DETECTION INI DETECTION INI SKGBZ JP TEL DELAY, IS IT SKGBZ JP VE HAD SOME N	LEVEL 7 OUT 0 HI BEG THE DEBOU PUT AND CON ON CIRCUIT 0 HI ANSITION 1 1 STILL0 0 HI HI DOISE GO BAC	; UP ZERO CROSSER INPUT ; SPECIFY MAX LEVEL : COPY TO TEMP1 ; SYNC UP TO 60 HZ ; READY NOW ; WAIT TILL G IS 1 NCE FOR THE ZERO MPENSATES FOR THE : TEST GO FOR ZERO CROSS ; HIGH LEVEL ; START OF DEBOUNCE DELAY : TEST FOR 0 ; FALSE ALARM CK AND WAIT FOR TRUE ZC	JK: TRE: SBLEV: MAXLEV:	LDD XAD LBI LD AISC JP JP X JSRP JP LBI JSRP AISC JMP LBI CLRA AISC SKE JP JP LBI LBI	SUBLEV TEMP TEMP 1 TRE SBLEV SPDL JK FIND DEC 1 FIRE SUBLEV 14 THERE MAXLEV INC FIND	; INIT FOR SUBLEVEL DELAY ; AT SUB LEVEL ? ; NO DO DELAY ; YES ; VARIABLE DELAY ; DEC FIRE NUMBER ; TEST IF FIND AT 15 ; NO KEEP FIRING AT THAT LEV ; YES INC SUBLEVEL ; IS MAX SUBLEV REACHED ; NO INC SUBLEV ; YES FIRE IT ; GO TO NEXT SUBLEVEL	
BEGG: THIS SECT VOLTAGE OFFSET O HI: GETS HEF DID A LITT MUST HAV	LBI STIII JSR SKGBZ JP JP TION PROVIDES DETECTION INI DETECTION INI DETECTION INI SKGBZ JP TLE DELAY, IS IT SKGBZ JP	LEVEL 7 OUT 0 HI BEG UT AND CON ON CIRCUIT 0 HI ANSITION 1 1 STILL 0 0 HI	; UP ZERO CROSSER INPUT ; SPECIFY MAX LEVEL ; COPY TO TEMP1 ; SYNC UP TO 60 HZ ; READY NOW ; WAIT TILL G IS 1 NCE FOR THE ZERO APENSATES FOR THE ; TEST GO FOR ZERO CROSS ; HIGH LEVEL ; START OF DEBOUNCE DELAY ; TEST FOR 0 ; FALSE ALARM	JK: TRE: SBLEV: MAXLEV:	LDD XAD LBI LD AISC JP JP X JSRP JP LBI CLRA AISC SKE JP JP JP LBI CLRA AISC SKE JP JP STI	SUBLEV TEMP TEMP 1 TRE SBLEV JK FIND DEC 1 FIRE SUBLEV 14 THERE MAXLEV INC FIND 14	; INIT FOR SUBLEVEL DELAY : AT SUB LEVEL ? ; NO DO DELAY ; YES ; VARIABLE DELAY : DEC FIRE NUMBER ; TEST IF FIND AT 15 ; NO KEEP FINING AT THAT LEV ; YES INC SUBLEVEL ; IS MAX SUBLEV REACHED ; NO INC SUBLEV ; YES FIRE IT ; GO TO NEXT SUBLEVEL ; SET FIRE TIME	
BEGG: THIS SECT VOLTAGE OFFSET O HI: GETS HEF DID A LITT MUST HAV	LBI STIII JSR SKGBZ JP JP TION PROVIDES DETECTION INI DF THE DETECTI SKGBZ JP RE ON FIRST TR CLRA AISC JP TEL DELAY, IS IT SKGBZ JP VE HAD SOME N	LEVEL 7 OUT 0 HI BEG THE DEBOU PUT AND CON ON CIRCUIT 0 HI ANSITION 1 1 STILL0 0 HI HI 00ISE GO BAG	; UP ZERO CROSSER INPUT ; SPECIFY MAX LEVEL : COPY TO TEMP1 ; SYNC UP TO 60 HZ ; READY NOW ; WAIT TILL G IS 1 NCE FOR THE ZERO MPENSATES FOR THE : TEST GO FOR ZERO CROSS ; HIGH LEVEL ; START OF DEBOUNCE DELAY : TEST FOR 0 ; FALSE ALARM CK AND WAIT FOR TRUE ZC	JK: TRE: SBLEV: MAXLEV:	LDD XAD LBI LD AISC JP JP X JSRP JP LBI CLRA AISC SKE JP JP JP LBI CLRA AISC SKE JP JP STI	SUBLEV TEMP TEMP 1 TRE SBLEV JK FIND DEC 1 FIRE SUBLEV 14 THERE MAXLEV INC FIND 14	; INIT FOR SUBLEVEL DELAY : AT SUB LEVEL ? ; NO DO DELAY ; YES ; VARIABLE DELAY : DEC FIRE NUMBER ; TEST IF FIND AT 15 ; NO KEEP FINING AT THAT LEV ; YES INC SUBLEVEL ; IS MAX SUBLEV REACHED ; NO INC SUBLEV ; YES FIRE IT ; GO TO NEXT SUBLEVEL ; SET FIRE TIME	
BEGG: THIS SECT VOLTAGE OFFSET O HI: GETS HEF DID A LITT MUST HAN DOIT:	LBI STII JSR SKGBZ JP JP TION PROVIDES DETECTION INI OF THE DETECTION SKGBZ JP TLE DELAY, IS IT SKGBZ JP TLE DELAY, IS IT SKGBZ JP VE HAD SOME N JMP	LEVEL 7 OUT 0 HI BEG THE DEBOU PUT AND CON CON CIRCUIT 0 HI ANSITION 1 1 STILL 0 0 HI IOISE GO BAG INT	; UP ZERO CROSSER INPUT ; SPECIFY MAX LEVEL ; COPY TO TEMP1 ; SYNC UP TO 60 HZ ; READY NOW ; WAIT TILL G IS 1 WCE FOR THE ZERO MPENSATES FOR THE ; TEST GO FOR ZERO CROSS ; HIGH LEVEL ; START OF DEBOUNCE DELAY ; TEST FOR 0 ; FALSE ALARM X AND WAIT FOR TRUE ZC ; VALID TRANSITION, SERVICE ; TRIAC	JK: TRE: SBLEV: MAXLEV:	LDD XAD LBI LD AISC JP X JSRP JP LBI JSRP AISC JMP LBI CLRA AISC SKE JP JSRP LBI STII JP	SUBLEV TEMP TEMP 1 TRE SBLEV SPDL JK FIND DEC 1 FIRE SUBLEV 14 THERE MAXLEV INC FIND 14 MAXLEV	; INIT FOR SUBLEVEL DELAY : AT SUB LEVEL ? ; NO DO DELAY ; YES ; VARIABLE DELAY : DEC FIRE NUMBER ; TEST IF FIND AT 15 ; NO KEEP FINING AT THAT LEV ; YES INC SUBLEVEL ; IS MAX SUBLEV REACHED ; NO INC SUBLEV ; YES FIRE IT ; GO TO NEXT SUBLEVEL ; SET FIRE TIME	
BEGG: THIS SECT VOLTAGE OFFSET O HI: GETS HEF DID A LITT MUST HAN DOIT:	LBI STII JSR SKGBZ JP JP TION PROVIDES DETECTION INI OF THE DETECTION SKGBZ JP TLE OK FIRST TR CLRA AISC JP TLE DELAY, IS IT SKGBZ JP VE HAD SOME N JMP SKGBZ	LEVEL 7 OUT 0 HI BEG THE DEBOU 2UT AND CON ON CIRCUIT 0 HI ANSITION 1 1 STILL 0 0 HI IOISE GO BAC INT	; UP ZERO CROSSER INPUT ; SPECIFY MAX LEVEL ; COPY TO TEMP1 ; SYNC UP TO 60 HZ ; READY NOW ; WAIT TILL G IS 1 NCE FOR THE ZERO APENSATES FOR THE ; TEST GO FOR ZERO CROSS ; HIGH LEVEL ; START OF DEBOUNCE DELAY ; TEST FOR 0 ; FALSE ALARM CK AND WAIT FOR TRUE ZC ; VALID TRANSITION, SERVICE ; TRIAC ; DEBOUNCE IN 0 TO 1	JK: TRE: SBLEV: MAXLEV:	LDD XAD LBI LD AISC JP X JSRP JP LBI JSRP LBI CLRA AISC SKE JP JP JSRP LBI STII JP	SUBLEV TEMP TEMP 1 TRE SBLEV JK FIND DEC 1 FIRE SUBLEV 14 THERE MAXLEV INC FIND 14	; INIT FOR SUBLEVEL DELAY : AT SUB LEVEL ? ; NO DO DELAY ; YES ; VARIABLE DELAY : DEC FIRE NUMBER ; TEST IF FIND AT 15 ; NO KEEP FINING AT THAT LEV ; YES INC SUBLEVEL ; IS MAX SUBLEV REACHED ; NO INC SUBLEV ; YES FIRE IT ; GO TO NEXT SUBLEVEL ; SET FIRE TIME	
BEGG: THIS SECT VOLTAGE OFFSET O HI: GETS HEF DID A LITT MUST HAN DOIT:	LBI STIII JSR SKGBZ JP JP TION PROVIDES DETECTION INI DETECTION INI DETECTION INI DETECTION INI SKGBZ JP TEL DELAY, IS IT SKGBZ JP VE HAD SOME N JMP SKGBZ JP	LEVEL 7 OUT 0 HI BEG UT AND CON ON CIRCUIT 0 HI ANSITION 1 1 STILL0 0 HI 0OISE GO BAC INT 0 DDD	; UP ZERO CROSSER INPUT ; SPECIFY MAX LEVEL ; COPY TO TEMP1 ; SYNC UP TO 60 HZ ; READY NOW ; WAIT TILL G IS 1 NCE FOR THE ZERO APENSATES FOR THE ; TEST GO FOR ZERO CROSS ; HIGH LEVEL ; START OF DEBOUNCE DELAY : TEST FOR 0 ; FALSE ALARM SX AND WAIT FOR TRUE ZC ; VALID TRANSITION, SERVICE ; TIAC ; DEBOUNCE IN 0 TO 1 ; MAY HAVE SOMETHING THERE	JK: TRE: SBLEV: MAXLEV:	LDD XAD LBI LD AISC JP X JSRP JP LBI JSRP AISC JMP LBI CLRA AISC SKE JP JSRP LBI STII JP	SUBLEV TEMP TEMP 1 TRE SBLEV SPDL JK FIND DEC 1 FIRE SUBLEV 14 THERE MAXLEV INC FIND 14 MAXLEV	; INIT FOR SUBLEVEL DELAY : AT SUB LEVEL ? ; NO DO DELAY ; YES ; VARIABLE DELAY : DEC FIRE NUMBER ; TEST IF FIND AT 15 ; NO KEEP FINING AT THAT LEV ; YES INC SUBLEVEL ; IS MAX SUBLEV REACHED ; NO INC SUBLEV ; YES FIRE IT ; GO TO NEXT SUBLEVEL ; SET FIRE TIME	
BEGG: THIS SECT VOLTAGE OFFSET O HI: GETS HEF DID A LITT MUST HAV DOIT: LO:	LBI STII JSR SKGBZ JP JP TION PROVIDES DETECTION INI PF THE DETECTION SKGBZ JP TLE DELAY, IS IT SKGBZ JP VE HAD SOME N JMP SKGBZ JP JP	LEVEL 7 OUT 0 HI BEG THE DEBOU 2UT AND CON ON CIRCUIT 0 HI ANSITION 1 1 STILL 0 0 HI IOISE GO BAC INT	; UP ZERO CROSSER INPUT ; SPECIFY MAX LEVEL ; COPY TO TEMP1 ; SYNC UP TO 60 HZ ; READY NOW ; WAIT TILL G IS 1 NCE FOR THE ZERO MPENSATES FOR THE ; TEST GO FOR ZERO CROSS ; HIGH LEVEL ; START OF DEBOUNCE DELAY ; FALSE ALARM ; FALSE ALARM ; VALID TRANSITION, SERVICE ; TRIAC ; DEBOUNCE IN 0 TO 1 ; MAY HAVE SOMETHING THERE ; NO WAIT HERE FOR A BIT	JK: TRE: SBLEV: MAXLEV:	LDD XAD LBI LD AISC JP X JSRP JP LBI JSRP AISC JMP LBI CLRA AISC SKE JP JSRP LBI STII JP	SUBLEV TEMP TEMP 1 TRE SBLEV SPDL JK FIND DEC 1 FIRE SUBLEV 14 THERE MAXLEV INC FIND 14 MAXLEV	; INIT FOR SUBLEVEL DELAY : AT SUB LEVEL ? ; NO DO DELAY ; YES ; VARIABLE DELAY : DEC FIRE NUMBER ; TEST IF FIND AT 15 ; NO KEEP FINING AT THAT LEV ; YES INC SUBLEVEL ; IS MAX SUBLEV REACHED ; NO INC SUBLEV ; YES FIRE IT ; GO TO NEXT SUBLEVEL ; SET FIRE TIME	
BEGG: THIS SECT VOLTAGE OFFSET O HI: GETS HEF DID A LITT MUST HAV DOIT: .0:	LBI STII JSR SKGBZ JP JP TION PROVIDES DETECTION INI OF THE DETECTION SKGBZ JP TLE DELAY, IS IT SKGBZ JP TLE DELAY, IS IT SKGBZ JP SKGBZ JP JP CLRA	LEVEL 7 OUT 0 HI BEG OUT AND CON ON CIRCUIT 0 HI ANSITION 1 1 STILL 0 0 HI OIOISE GO BAC INT 0 DDD LO	; UP ZERO CROSSER INPUT ; SPECIFY MAX LEVEL ; COPY TO TEMP1 ; SYNC UP TO 60 HZ ; READY NOW ; WAIT TILL G IS 1 NCE FOR THE ZERO APENSATES FOR THE ; TEST GO FOR ZERO CROSS ; HIGH LEVEL ; START OF DEBOUNCE DELAY : TEST FOR 0 ; FALSE ALARM SX AND WAIT FOR TRUE ZC ; VALID TRANSITION, SERVICE ; TIAC ; DEBOUNCE IN 0 TO 1 ; MAY HAVE SOMETHING THERE	JK: TRE: SBLEV: MAXLEV:	LDD XAD LBI LD AISC JP X JSRP JP LBI JSRP AISC JMP LBI CLRA AISC SKE JP JSRP LBI STII JP	SUBLEV TEMP TEMP 1 TRE SBLEV SPDL JK FIND DEC 1 FIRE SUBLEV 14 THERE MAXLEV INC FIND 14 MAXLEV	; INIT FOR SUBLEVEL DELAY : AT SUB LEVEL ? ; NO DO DELAY ; YES ; VARIABLE DELAY : DEC FIRE NUMBER ; TEST IF FIND AT 15 ; NO KEEP FINING AT THAT LEV ; YES INC SUBLEVEL ; IS MAX SUBLEV REACHED ; NO INC SUBLEV ; YES FIRE IT ; GO TO NEXT SUBLEVEL ; SET FIRE TIME	
BEGG: THIS SECT VOLTAGE OFFSET O HI: GETS HEF DID A LITT MUST HAV DOIT: LO:	LBI STII JSR SKGBZ JP JP TION PROVIDES DETECTION INI OF THE DETECTION SKGBZ JP TLE DELAY, IS IT SKGBZ JP TLE DELAY, IS IT SKGBZ JP SKGBZ JP SKGBZ JP CLRA AISC	LEVEL 7 OUT 0 HI BEG UT AND CON ON CIRCUIT 0 HI ANSITION 1 1 STILL0 0 HI 0OISE GO BAC INT 0 DDD	; UP ZERO CROSSER INPUT ; SPECIFY MAX LEVEL ; COPY TO TEMP1 ; SYNC UP TO 60 HZ ; READY NOW ; WAIT TILL G IS 1 NCE FOR THE ZERO MPENSATES FOR THE ; TEST GO FOR ZERO CROSS ; HIGH LEVEL ; START OF DEBOUNCE DELAY ; FALSE ALARM ; FALSE ALARM ; VALID TRANSITION, SERVICE ; TRIAC ; DEBOUNCE IN 0 TO 1 ; MAY HAVE SOMETHING THERE ; NO WAIT HERE FOR A BIT	JK: TRE: SBLEV: MAXLEV:	LDD XAD LBI LD AISC JP X JSRP JP LBI JSRP AISC JMP LBI CLRA AISC SKE JP JSRP LBI STII JP	SUBLEV TEMP TEMP 1 TRE SBLEV SPDL JK FIND DEC 1 FIRE SUBLEV 14 THERE MAXLEV INC FIND 14 MAXLEV	; INIT FOR SUBLEVEL DELAY : AT SUB LEVEL ? ; NO DO DELAY ; YES ; VARIABLE DELAY : DEC FIRE NUMBER ; TEST IF FIND AT 15 ; NO KEEP FINING AT THAT LEV ; YES INC SUBLEVEL ; IS MAX SUBLEV REACHED ; NO INC SUBLEV ; YES FIRE IT ; GO TO NEXT SUBLEVEL ; SET FIRE TIME	
BEGG: THIS SECT VOLTAGE OFFSET O HI: GETS HEF DID A LITT MUST HAV DOIT: LO:	LBI STII JSR SKGBZ JP JP TION PROVIDES DETECTION INI OF THE DETECTION SKGBZ JP TLE DELAY, IS IT SKGBZ JP TLE DELAY, IS IT SKGBZ JP SKGBZ JP JP CLRA	LEVEL 7 OUT 0 HI BEG OUT AND CON ON CIRCUIT 0 HI ANSITION 1 1 STILL 0 0 HI OIOISE GO BAC INT 0 DDD LO	; UP ZERO CROSSER INPUT ; SPECIFY MAX LEVEL ; COPY TO TEMP1 ; SYNC UP TO 60 HZ ; READY NOW ; WAIT TILL G IS 1 NCE FOR THE ZERO MPENSATES FOR THE ; TEST GO FOR ZERO CROSS ; HIGH LEVEL ; START OF DEBOUNCE DELAY ; FALSE ALARM ; FALSE ALARM ; VALID TRANSITION, SERVICE ; TRIAC ; DEBOUNCE IN 0 TO 1 ; MAY HAVE SOMETHING THERE ; NO WAIT HERE FOR A BIT	JK: TRE: SBLEV: MAXLEV:	LDD XAD LBI LD AISC JP X JSRP JP LBI JSRP AISC JMP LBI CLRA AISC SKE JP JSRP LBI STII JP	SUBLEV TEMP TEMP 1 TRE SBLEV SPDL JK FIND DEC 1 FIRE SUBLEV 14 THERE MAXLEV INC FIND 14 MAXLEV	; INIT FOR SUBLEVEL DELAY : AT SUB LEVEL ? ; NO DO DELAY ; YES ; VARIABLE DELAY : DEC FIRE NUMBER ; TEST IF FIND AT 15 ; NO KEEP FINING AT THAT LEV ; YES INC SUBLEVEL ; IS MAX SUBLEV REACHED ; NO INC SUBLEV ; YES FIRE IT ; GO TO NEXT SUBLEVEL ; SET FIRE TIME	
BEG: THIS SECT VOLTAGE OFFSET O HI: GETS HEF	LBI STII JSR SKGBZ JP JP TION PROVIDES DETECTION INI OF THE DETECTION SKGBZ JP TLE DELAY, IS IT SKGBZ JP TLE DELAY, IS IT SKGBZ JP SKGBZ JP SKGBZ JP CLRA AISC	LEVEL 7 OUT 0 HI BEG THE DEBOU PUT AND CON ON CIRCUIT 0 HI ANSITION 1 1 STILL 0 0 HI OISE GO BAC INT 0 DDD LO	; UP ZERO CROSSER INPUT ; SPECIFY MAX LEVEL ; COPY TO TEMP1 ; SYNC UP TO 60 HZ ; READY NOW ; WAIT TILL G IS 1 NCE FOR THE ZERO MPENSATES FOR THE ; TEST GO FOR ZERO CROSS ; HIGH LEVEL ; START OF DEBOUNCE DELAY ; FALSE ALARM ; FALSE ALARM ; VALID TRANSITION, SERVICE ; TRIAC ; DEBOUNCE IN 0 TO 1 ; MAY HAVE SOMETHING THERE ; NO WAIT HERE FOR A BIT	JK: TRE: SBLEV: MAXLEV:	LDD XAD LBI LD AISC JP X JSRP JP LBI JSRP AISC JMP LBI CLRA AISC SKE JP JSRP LBI STII JP	SUBLEV TEMP TEMP 1 TRE SBLEV SPDL JK FIND DEC 1 FIRE SUBLEV 14 THERE MAXLEV INC FIND 14 MAXLEV	; INIT FOR SUBLEVEL DELAY : AT SUB LEVEL ? ; NO DO DELAY ; YES ; VARIABLE DELAY : DEC FIRE NUMBER ; TEST IF FIND AT 15 ; NO KEEP FINING AT THAT LEV ; YES INC SUBLEVEL ; IS MAX SUBLEV REACHED ; NO INC SUBLEV ; YES FIRE IT ; GO TO NEXT SUBLEVEL ; SET FIRE TIME	
BEGG: THIS SECT VOLTAGE OFFSET O HI: GETS HEF DID A LITT MUST HAV DOIT: LO:	LBI STIII JSR SKGBZ JP JP TION PROVIDES DETECTION INI OF THE DETECTION SKGBZ JP TLE DELAY, IS IT SKGBZ JP TLE DELAY, IS IT SKGBZ JP VE HAD SOME N JMP SKGBZ JP CLERA AISC JP	LEVEL 7 OUT 0 HI BEG OT AND CON ON CIRCUIT 0 HI ANSITION 1 1 STILL0 0 HI IOISE GO BAC INT 0 DDD LO	; UP ZERO CROSSER INPUT ; SPECIFY MAX LEVEL ; COPY TO TEMP1 ; SYNC UP TO 60 HZ ; READY NOW ; WAIT TILL G IS 1 NCE FOR THE ZERO APENSATES FOR THE ; TEST GO FOR ZERO CROSS ; HIGH LEVEL ; START OF DEBOUNCE DELAY ; TEST FOR 0 ; FALSE ALARM SX AND WAIT FOR TRUE ZC ; VALID TRANSITION, SERVICE ; TRAC ; DEBOUNCE IN 0 TO 1 ; MAY HAVE SOMETHING THERE ; NO WAIT HERE FOR A BIT ; GOING TO WAIT AND SEE	JK: TRE: SBLEV: MAXLEV:	LDD XAD LBI LD AISC JP X JSRP JP LBI JSRP AISC JMP LBI CLRA AISC SKE JP JSRP LBI STII JP	SUBLEV TEMP TEMP 1 TRE SBLEV SPDL JK FIND DEC 1 FIRE SUBLEV 14 THERE MAXLEV INC FIND 14 MAXLEV	; INIT FOR SUBLEVEL DELAY : AT SUB LEVEL ? ; NO DO DELAY ; YES ; VARIABLE DELAY : DEC FIRE NUMBER ; TEST IF FIND AT 15 ; NO KEEP FINING AT THAT LEV ; YES INC SUBLEVEL ; IS MAX SUBLEV REACHED ; NO INC SUBLEV ; YES FIRE IT ; GO TO NEXT SUBLEVEL ; SET FIRE TIME	

; SUBROUT	INE PAGE				NOP		
INC:	CLRA				NOP		
	AISC	1			LBI	0,0	
	JP	ADEX	; GO ADD ONE TO DIGIT		OBD		
DEC:	CLRA		; 0 TO A		SKBGZ	0	; TEST WHICH DEBOUNCE IS
	COMP		; CREATE A 15				; NEEDED
ADEX:	ADD		; ADD A TO RAM		JMP	н	; DEBOUNCE ONE TO ZERO
	х		; PUT BACK (D - 1 IN A NOW)		JMP	LO	; DEBOUNCE ZERO TO ONE
	RET			SPDL:	LBI	TEMP1	; TEMP1 IS A TEMP REG
DE5:	LBI	0,10	; DELAY ROUTINE	PORT:	LD		; VALUE IN TEMP1 DICTATES
	CLRA		; WILL BE REPLACED LATER		AISC	1	; THE AMOUNT OF DELAY
	AISC	3			JP	FOY	
	JP	1		OUT:	LBI	LEVEL	; ALSO USED TO COPY LEVE
	LD				LD	1	; RESTORE LEVEL
	XIS				х		
	JP	5			RET		
	RET		; DONE DELAY	FOY:	х		
FIRE:	LBI	0,15	; PULSE D OUTPUT		JP	PORT	
	OBD				.END		

LIFE SUPPORT POLICY

NOP

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Ņ	National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 85 86 Email: cnjwge@tewn2.nsc.com Deutsch Tel: (+49) 0-180-530 86 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 35 58	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tei: (652) 2737-1600	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.