EE 434 Lecture 4

Basic Logic Circuits

Quiz 2 If the hard yield of a die on a 12 inch wafer in a 180nm process with a defect density of 1/cm² is 90%, how many die are there on the wafer?

Quiz 2 If the hard yield of a die on a 12 inch wafer in a 180nm process with a defect density of 1/cm² is 90%, how many die are there on the wafer?

Solution:

$$Y_{\rm H} = e^{-Ad}$$

$$A = \frac{-\ln(Y_{\rm H})}{d} = \frac{-\ln(.9)}{1} = .105 \text{ cm}^2$$

$$N_{\rm die} = \frac{A_{\rm WAFER}}{A_{\rm DIE}}$$

$$N_{\rm die} = \frac{A_{\rm WAFER}}{A_{\rm DIE}} = \frac{\pi(6in)^2}{.105 \text{ cm}^2} \left(\frac{2.54 \text{ cm}}{\text{in}}\right)^2 = 6729$$

Review from Last Time

- Hard faults in die place a fundamental limit on practical die size and yield
- Soft faults are of considerable concern in many applications as well
- Arbitrary assignment of yield expectations to any part of a process is an invitation to financial disaster
- Semiconductor industry got its start about 50 years ago but only the growth in the past decade has made it one of major egonomic forces in the world economy

Basic Logic Circuits

- Will present a brief description of logic circuits based upon simple models and qualitative description of processes
- Will discuss process technology needed to develop better models
- Will provide more in-depth discussion of logic circuits based upon better device models

MOS Transistor Qualitative Discussion of n-channel Operation

MOS Transistor Qualitative Discussion of n-channel Operation

Behavioral Description of Basic Operation

If V_{GS} is large, short circuit exists between drain and source If V_{GS} is small, open circuit exists between drain and source

MOS Transistor Qualitative Discussion of n-channel Operation

Equivalent Circuit for n-channel MOSFET

MOS Transistor Qualitative Discussion of p-channel Operation

MOS Transistor Qualitative Discussion of p-channel Operation

Behavioral Description of Basic Operation

If V_{GS} is small (negative), short circuit exists between drain and source If V_{GS} is large (near 0), open circuit exists between drain and source

MOS Transistor Qualitative Discussion of p-channel Operation

Equivalent Circuit for p-channel MOSFET

MOS Transistor Comparison of Operation

Circuit Behaves as a Boolean Inverter

Truth Table

А	В	С
0	0	1
0	1	0
1	0	0
1	1	0

