EE 434 Lecture 5

Basic Logic Circuits

Quiz 3

A proposed two-input Boolean Gate is shown

- a. Determine the Boolean output C if A=B=1
- b. Is this a viable gate (give reasons for your answer)

Use a switch-level model for the MOS devices

Quiz 3

A proposed two-input Boolean Gate is shown

- a. Determine the Boolean output C if A=B=1
- b. Is this a viable gate (give reasons for your answer)

Quiz 3 A proposed two-input Boolean Gate is shown a. Determine the Boolean output C if A=B=1

b. Is this a viable gate (give reasons for your answer)

Review from Last Time

- Simple model of MOSFET was developed
 - hierarchical model structure will be developed
 - generally use simplest model that can be justified
- Simple CMOS gates were introduced
 - Zero power dissipation
 - Rail to Rail Swings
 - Infinitely Fast
 - Simple model may not give sufficiently accurate insight relating to these properties

Complex Gates

Complex Gates

Pull up and pull down network never both conducting

One of the two networks is always conducting

Consider

Alternate Implementation

3 levels of Logic

16 Transistors if Basic CMOS Gates are Used

Consider $\mathbf{Y} = \mathbf{A} \cdot \mathbf{B}$

Standard CMOS Implementation

2 levels of Logic

6 Transistors if Basic CMOS Gates are Used

Basic noninverting functions generally require more complexity if basic CMOS gates are used for implementation

Requires only 2 transistors rather than 6 for a standard CMOS gate (and a resistor).

Even simpler pass transistor logic implementations are possible

Requires only 1 transistor (and a resistor).

Requires only 1 transistor (and a resistor)

- Resistor may require more area than several hundred or even several thousand transistors
- -Signal levels may not go to $V_{\mbox{\scriptsize DD}}$
- Static power dissipation may not be zero
- -Signals may degrade unacceptably if multiple gates are cascaded
- -"resistor" often implemented with a transistor to reduce area but signal swing and power dissipation problems still persist
- -Pass transistor logic is widely used

Logic Design Styles

- Several different logic design styles are often used throughout a given design
- The designer has complete control over what is placed on silicon and governed only by cost and performance
- New logic design strategies have been proposed recently and others will likely emerge in the future
- The digital designer needs to be familiar with the benefits and limitations of varying logic styles to come up with a good solution for given system requirements