EE 434 Lecture 11

Basic Semiconductor Processes

Devices in Semiconductor Processes

Quiz 9 The top view of a device fabricated in a bulk CMOS process is shown in the figure below

- a) Identify the device
- b) Sketch a cross-section along the AA' section line

And the number is

1 8 7 5 3 6 9 4 2

Review from Last Time

- Process Flow is a "recipe" for the process
 - Shows what can and can not be made
 - Gives insight into performance capabilities and limitations
- Back-End Processes
 - Die attach options (eutectic, preform,conductive epoxy)
 - Stresses the die
 - Bonding
 - Wire bonding
 - Bump bonding
 - Packaging
 - Many packaging options
 - Package Costs can be large so defective die should be eliminated before packaging

Packaging

- 1. Many variants in packages now available
- Considerable development ongoing on developing packaging technology
- 3. Cost can vary from few cents to tens of dollars
- 4. Must minimize product loss after packaged
- 5. Choice of package for a product is serious business
- 6. Designer invariably needs to know packaging plans and package models

Packaging

Packaging

Basic Semiconductor Processes

MOS (Metal Oxide Semiconductor)

1. NMOS n-ch

2. PMOS p-ch

3. CMOS n-ch & p-ch

Basic Device: MOSFET

Niche Device: MESFET

Other Devices: Diode

BJT

Resistors Capacitors

Schottky Diode

Basic Semiconductor Processes

Bipolar

- 1. T^2L
- 2. ECL
- 3. $I^{2}L$
- 4. Linear ICs

Basic Device: BJT (Bipolar Junction Transistor)

Niche Devices: HBJT (Heterojunction Bipolar Transistor)

HBT

Other Devices: Diode

Resistor Capacitor

Schottky Diode

JFET (Junction Field Effect Transistor)

Basic Semiconductor Processes

Other Processes

- Thin and Thick Film Processes
 - Basic Device: Resistor
- BiMOS or BiCMOS
 - Combines both MOS & Bipolar Processes
 - Basic Devices: MOSFET & BJT
- SiGe
 - BJT with HBT implementation
- SiGe / MOS
 - Combines HBT & MOSFET technology
- SOI / SOS (Silicon on Insulator / Silicon on Sapphire)
- Twin-Well & Twin Tub CMOS
 - Very similar to basic CMOS but more optimal transistor char.

Summary of Devices by Processes

- Standard CMOS Process
 - MOS Transistors
 - n-channel
 - p-channel
 - Capacitors
 - Resistors
 - Diodes
 - BJT (in some processes)
 - npn
 - pnp
 - JFET (in some processes)
 - n-channel
 - p-channel
- Standard Bipolar Process
 - BJT
 - npn
 - pnp
 - JFET
 - n-channel
 - p-channel
 - Diodes
 - Resistors
 - Capacitors
- Niche Devices
 - Photodetectors (photodiodes, phototransistors, photoresistors)
 - MESFET
 - HBT
 - Schottky Diode (not Shockley)
 - MEM Devices
 -

Basic Devices

- Devices in Standard Processes
 - MOS Transistors
 - n-channel
 - p-channel
 - Capacitors
 - Resistors
 - Diodes
 - BJT (in some processes)
 - npn
 - pnp
- Niche Devices
 - Photodetectors
 - MESFET
 - Schottky Diode (not Shockley)
 - MEM Devices
 -

Limited Consideration in This Course

Basic Devices and Device Models

- Resistor
- Diode
- Capacitor
- MOSFET
- BJT

Basic Devices and Device Models

- Resistor
 - Diode
 - Capacitor
 - MOSFET
 - BJT

Resistors

- Generally thin-film devices
- Almost any thin-film layer can be used as a resistor
 - Diffused resistors
 - Poly Resistors
 - Metal Resistors
 - "Thin-film" adders (SiCr or NiCr)
- Subject to process variations, gradient effects and local random variations
- Often temperature and voltage dependent
 - Ambient temperature
 - Local Heating
- Nonlinearities often a cause of distortion when used in circuits
- Trimming possible resistors
 - Laser,links,switches

Resistor Model

Model:

$$R = \frac{V}{I}$$

Resistivity

Volumetric measure of conduction capability of a material

$$\rho = \frac{AR}{L}$$

for homogeneous material,

$$\rho \perp A, R, L$$

Sheet Resistance

$$R_{\square} = \frac{RW}{L}$$
 (for d << w, d << L) units: ohms / \square

for homogeneous materials, R_{\parallel} is independent of W, L, R

Relationship between ρ and R₀

$$R_{\square} = \frac{RW}{L}$$

$$\rho = \frac{AR}{L}$$

$$\rho = \frac{A}{W}R_{\square}$$

$$A = W \times d$$

$$\rho = \frac{A}{W}R_{\square} = \frac{W}{W}R_{\square} = d \times R_{\square}$$

Number of squares, N_s, often used instead of L / W in determining resistance of film resistors

$$R=R_{\square}N_{S}$$

R = ?

$$R = ?$$

$$N_{S} = 8.4$$

$$R = R_{\parallel}$$
 (8.4)

Corners in Film Resistors

Rule of Thumb: .55 squares for each corner

Determine R if $R_{\parallel} = 100 \Omega / \mathbb{I}$

$$N_S$$
=17.1
 $R = (17.1) R_{\parallel}$
 $R = 1710 \Omega$

Resistivity of Materials used in Semiconductor Processing

• Cu: $1.7E-6 \Omega cm$

• Al: $2.7E-4 \Omega cm$

• Gold: 2.4E-6 Ω cm

• Platinum: $3.0E-6 \Omega cm$

• n-Si: $.25 \text{ to } 5 \Omega \text{cm}$

• intrinsic Si: 2.5*E5* Ωcm

• SiO₂: $E14 \Omega cm$

Temperature Coefficients

Used for indicating temperature sensitivity of resistors & capacitors

For a resistor:

$$TCR = \left(\frac{1}{R} \frac{dR}{dT}\right) \Big|_{\text{op. temp}}^{10^6} \quad \text{ppm/°C}$$

This diff eqn can easily be solved if TCR is a constant

$$R(T_2) = R(T_1)e^{\frac{T_2 - T_1}{10^6}TCR}$$

$$R(T_2) \approx R(T_1) \left[1 + (T_2 - T_1) \frac{TCR}{10^6} \right]$$

Identical Expressions for Capacitors

Voltage Coefficients

Used for indicating voltage sensitivity of resistors & capacitors

For a resistor:

$$VCR = \left(\frac{1}{R} \frac{dR}{dV}\right)_{\text{ref voltage}}^{10^6} ppm/V$$

This diff eqn can easily be solved if VCR is a constant

$$R(V_2) = R(V_1)e^{\frac{V_2 - V_1}{10^6}VCR}$$

$$\mathbf{R}(\mathbf{V_2}) \approx \mathbf{R}(\mathbf{V_1}) \left[1 + (\mathbf{V_2} - \mathbf{V_1}) \frac{\mathbf{VCR}}{\mathbf{10}^6} \right]$$

Identical Expressions for Capacitors

Temperature and Voltage Coefficients

- Temperature and voltage coefficients often quite large for diffused resistors
- Temperature and voltage coefficients often quite small for poly and metal resistors