STRUCTURED DIGITAL CIRCUITS AND SYSTEMS 833

high and low logic levels of V, volts and V| volts, respectively. What should the
precharge voltage level V), be for fastest symmetrical operation of a read?

Solution. To reach a high voltage level, the data line voltage as a function of time
is

V(1) = Vpp — (Vpp ~ Vp)e "R
For the time to reach Vy, solve for ¢y, as
Vop — Vp
th = RyCG. In Vop — Vs
To reach a low voltage level (ignore the small effect of Ry), the data line voltage
as a function of time is
V(1) = Vpe "RdL

For the time to reach V), solve for #; as

Vo
ty =R In —
1 dGLIn v,
Setting t, = #] gives
Ryln ——— =R In —
uit Vop = Vi ¢ Vi

Letting the pullup/pulldown ratio be § = Ry/R4 and solving for § gives
s In Vp/V)
~ In[(Vpp = Vp)/(Vpp — V)]

as the relationship between § and V.

For a ratio-type memory cell, the pullup/pulldown ratio is set higher than the
normal value for logic gates to minimize power dissipation in the memory cell.
Assuming that § = 10,Vpp =5V,Vy, =4V, and V| = 0.5V, then V, = 3.78
V. In practice, § will be higher than 10 and V}, should be closer to V},.

The basic cross-coupled SRAM storage cell has several variations. Figure
9.10-4a shows a depletion-load cell for an NMOS technology. Many newer static
memory circuits use a polysilicon load resistor to form the circuit of Fig.
9.10-4b. This requires an additional mask step to provide a lightly doped poly-
silicon with a resistance of 100k to 1M{/O. If a high-resistance polysilicon
pullup of minimum size is used, the cell size is reduced by elimination of the
depletion transistor and its associated gate-to-source connection.

Another important structure for a static RAM uses CMOS inverters to im-
plement a basic memory cell with extremely low quiescent power characteristics.
Were it not for the size disadvantage of the CMOS cell, this cell would
be the overwhelming choice for static RAM memories. However, because of
the necessity to implement both p- and n-channel transistors and the correspond-
ing n- or p-well spacing requirements, the CMOS memory cell is larger than
its depletion- or resistive-load counterpart. Even with this disadvantage,

834 vLsI DESIGN TECHNIQUES FOR ANALOG AND DIGITAL CIRCUITS

Vop Voo

1 \

e
@ b)
Vi‘,D
D D
FIGURE 9.10-4
—l— Static RAM cells: (a) Deple-
- tion load, (b) Polysilicon resis-
(¢ tor load, (c) p-channel load.

many new static RAMs are built with CMOS to reduce power dissipation. The
typical CMOS memory cell structure of Fig. 9.10-4¢ can be compared with the
similar NMOS cell structure shown in Fig. 9.10-4a. The operation of the two
cells is identical except that the CMOS cell dissipates negligible power because
one of the series transistors from Vpp to ground is always turned off. The overall
organization of a static memory is the same independent of the type of load
device.

Unfortunately, SRAM memory is not as dense as the ROM memory types
described earlier because a typical static RAM storage cell requires six transistors.
The read-only memory cells of Sec. 9.9 required only one or two transistors
per cell. Even when manufacturers replace the depletion pullup transistors with
high-resistance polysilicon resistors, the SRAM memory cell still requires four
transistors plus the polysilicon resistors. Another type of fast read/write memory,
which requires only a single transistor and capacitor for a storage cell, is also
available. This memory is described in the next section.

SRAM s are the fastest read/write semiconductor memory in wide use today.
A speed advantage over DRAMs offsets the higher density and lower cost per

STRUCTURED DIGITAL CIRCUITS AND SYSTEMS 835

bit of DRAMSs in many applications. For example, SRAMs are widely used
in high-speed cache memories for modern computer systems. This section has
shown the characteristic cross-coupled inverter structure used for SRAM cells.
Additionally, examples showing operation of the highly capacitive row select and
data bit lines were considered.

9.1 DYNAMIC RAM MEMORY

The dynamic RAM (DRAM) form of integrated circuit memory has surpassed all
other random-access read/write memories in the number of cells or bits that can
be placed on a memory chip. A DRAM memory circuit uses charge storage on a
capacitor to represent binary data values. A few transistors (first three and now
just one) are required to select the cell and access the stored data. Because SRAM
memory requires more transistors per memory cell (either four or six, depend-
ing on how the pullup for the cross-coupled inverters is implemented), SRAM
cannot be manufactured with the high memory density of DRAM. Historically,
DRAM chips provide a ratio of about 4 to 1 in the number of memory cells
provided relative to SRAM chips for the highest-density memory chips of each
type. The DRAM memory array, requiring only enhancement transistors, can
be fabricated in either CMOS or NMOS technologies. The peripheral circuitry
such as decoders, selectors, sense amps, and output drivers can also be designed
for either technology. Most new DRAMs are designed for CMOS processes to
minimize power dissipation in the peripheral circuitry.

Dynamic RAM gets its name because the charge stored on the capacitor
cell leaks off with time, causing the stored value to be dynamic. If a logic state
is represented by a high voltage level on the capacitor cell, this voltage level
decreases for a p-well or p-type substrate device because of various leakage
paths until the value is indeterminate or changes to the complementary state.
Conversely, for an n-well or n-type substrate, the cell voltage increases with
leakage. The dynamic nature of this storage mechanism is described more fully
in Sec. 9.6. To prevent loss of data, the voltage on the capacitor cell must be
sampled and restored within a specified time period. This sample-and-restore
operation is called a memory refresh; it takes additional external circuitry to
ensure that all memory cells are refreshed periodically. A value of 2 ms is a
typical specification for the maximum time period between refreshes for DRAM
memories.

At one time, most DRAMs were manufactured using a three-transistor cell.
This cell, shown in Fig. 9.11-1, is based on charge stored on a capacitor with
one transistor acting as a buffer to drive the read data line, one transistor acting
as a read-select switch, and a third transistor acting as a write-select switch.
All transistors are minimum or near-minimum size to reduce layout area. The
three-transistor cell requires four bus lines for operation. These bus lines include
separate read and write selects and corresponding read and write data lines like
those shown in Fig 9.8-1. Providing a buffer transistor to drive the data line during
aread operation prevents degradation of the stored charge during a read operation.
However, the charge on the capacitor must still be refreshed periodically because

836 vLsI DESIGN TECHNIQUES FOR ANALOG AND DIGITAL CIRCUITS

Write Read
data data
Read .
select l
T L
) |
T 1L _1 1
Write
select -

FIGURE 9.11-1
Three-transistor dynamic RAM cell.

of the leakage problems mentioned earlier. The memory refresh is performed by
executing a read operation followed by a write operation. The three-transistor cell
is robust with respect to the read operation because the stored charge is isolated
by a buffer transistor.

Further search for increased memory density brought about the one-transistor
DRAM cell. A typical cell with a single select transistor and capacitor for charge
storage is shown in Fig. 9.11-2. The single transistor is a pass transistor that
serves to connect the stored value to a data bus under control of a select line. The
select line simultaneously selects all transistors along the same row, causing data
to be placed on the column lines corresponding to each selected cell. Although
valid data appear along every column, only one of these columns is further
selected for connection to the output on typical DRAMs. These one-transistor
cells are formed into a memory architecture as shown in Fig. 9.8-1.

Select J_
1

Data

FIGURE 9.11-2
One-transistor dynamic RAM cell.

STRUCTURED DIGITAL CIRCUITS AND SYSTEMS 837

To keep the size of a dynamic memory cell small, both the select transistor
and the storage capacitor must be small. The select transistor is a minimum or
near-minimum size device. The small storage capacitor is required to charge the
data line through the select transistor during a read operation. Because of the
length of the data line, its capacitance is usually large compared with storage
cell capacitance. When the select transistor connects the storage cell capacitance
and the data line capacitance, the charge is shared to equalize the voltage across
the two capacitors that now appear in parallel. Unfortunately, the charge on the
larger data line capacitance will have more effect on the final data line voltage
than the charge from the small memory cell capacitance. Thus, clever techniques
and sensitive circuits are necessary to reliably sense the stored value of a DRAM
cell.

One simple technique commonly used to sense the state of a dynamic mem-
ory cell involves splitting the data line into two equal halves, thereby splitting
the capacitance. Both halves of the data line are precharged to a voltage approx-
imately midway between the high and low logic levels. When a select line goes
high, it connects a storage cell capacitor to one of the data line halves; the other
half remains unselected. If a comparator circuit is connected with each data line
half serving as an input, then even the small change in data line voltage caused
by the selected capacitor cell can be detected. The inactive data line half serves
as a reference point. This technique requires a comparator for each data line.
A typical 256k X 1 DRAM has 512 data lines. The necessity of providing 512
comparators without using excessive area requires a simple comparator circuit.

Figure 9.11-3 shows a comparator circuit (also known as a sense amp) that
has been used to sense the state of DRAM memory cells. This circuit is a flip-flop
with special provision to break the cross-coupled links between the two inverters.
Before a read operation, the column select, Vg, and sense lines are set low. To
execute a read operation, the data lines are precharged to equal voltages (Vggr);
the desired data cell is gated by a row select to a column line, causing a slight
voltage imbalance; the cross-coupled feedback lines of the ﬂip—ﬂop are connected
(VEr); and the flip-flop is enabled (Sense). The flip-flop was in a quasi-stable state
before the sense line was asserted. The final state of the flip-flop is determined
by the slight difference in voltage of the two data column halves caused by the
selected memory cell. A later column select signal chooses one of the comparator
outputs as the desired data.

Because of the regenerative action of the flip-flop, the data line half will
be driven all the way to a high or low voltage, depending on the memory cell
contents, and the selected memory cell on each column will be refreshed. That
is, if the data cell voltage was higher than the precharged data line value, the
flip-flop will switch to drive that half of the data line toward the supply voltage,
thereby recharging the selected data cell. Conversely, a low data cell voltage will
be discharged toward ground. All memory cells of a DRAM are refreshed by
reading a cell on every row because all cells on a row are refreshed when any
cell on that row is read. If a memory contains N storage cells and is organized
as a square, the complete refresh operation requires a number of reads equal to
the square root of N .

838 vLSI DESIGN TECHNIQUES FOR ANALOG AND DIGITAL CIRCUITS

Vrer

Precharge —||j Data column half
P

L
T

Row 0
Vop

N\

M
TLT

T Sense out

Column
select
Comparator
(sense amp)
Ver

— 1 Sense out

Row 64
‘FLT”_{VDD .
T Row127
J'LL_|
H Row 128
L

Sy

Precharge ——||:‘\ Data column half

FIGURE 9.11-3

VRer DRAM dynamic sense amplifier.

STRUCTURED DIGITAL CIRCUITS AND SYSTEMS 839

As DRAMSs have gotten larger and storage cells smaller, the ratio between
data-line capacitance and memory cell capacitance has increased because of longer
data lines and smaller memory cells. To demonstrate how this ratio affects the
sensing voltage, consider the following example.

Example 9.11-1. Sensing voltage versus cell capacitance Determine the volt-
age change on a DRAM data line caused by connection to a memory cell in terms
of data line capacitance and memory cell capacitance.

Solution. Let the subscript ¢ refer to the memory cell, and the subscript d refer to
the data line. Before the memory cell is selected,

_— Q4
i g
and
Oc
Ve==
c Ce

After the cell is selected, the charge is redistributed so that both capacitors are at
the same voltage, V¢. Then

O¢ Q4 + Oc

W*q"q+a

The change in data-line voltage will be

C
Va—Vi=(Vq Vc)cd T G
This analysis shows that the change in data-line voltage that must be sensed is the
initial difference between the data-line and memory cell voltages diminished by the
ratio of the memory cell capacitance to the total capacitance. Typical capacitance
values are C. = 40 fF and Cy = 1 pF. Thus, an initial 2.5 V difference is divided
by 25, resulting in only a 100 mV change in the data-line voltage. It is difficult to
detect such a small change, but modern DRAMs are able to do so reliably.

DRAMs have the highest sales volume of memory chips fabricated today.
The simple storage cell described in this section leads to high density and low
cost per bit. The requirement for refresh of DRAM cell contents is an important
consideration in DRAM applications. The small cell/data-line capacitance ratio
hinders rapid sensing of memory cell state. Further decrease in the cell/data-line
capacitance ratio is an important factor in the design of next generation DRAMs.

9.12 REGISTER STORAGE CIRCUITS

Previous sections described the organization and characteristics of the major
types of semiconductor memories. These descriptions were for memories that
are usually implemented as stand-alone chips packed with as many memory cells
as the current technology allows. Other applications for memory cells are found
within sequential machines where the machine state must be stored. Sometimes
this temporary storage is accomplished with the shift register described earlier.

840 viLsi DESIGN TECHNIQUES FOR ANALOG AND DIGITAL CIRCUITS

Other times, the data must be stored for longer than one clock period. For
example, a general-purpose register within a microprocessor typically must hold
data while other operations are performed. The following sections describe two
types of storage cells that are used within sequential digital systems.

9.12.1 Quasi-Static Register Cells

Figure 9.12-1 shows a way to combine two inverters, two pass transistors, and a
nonoverlapping two-phase clock to provide a quasi-static register cell. Although
the quasi-static register cell uses exactly the same components as a two-stage
dynamic shift register (see Sec. 9.6), these components are interconnected in a
different way. The output of a first inverter is connected directly to the input of
a second inverter. One pass transistor, called the input pass transistor, controls
the input to the first inverter. The second pass transistor, called the feedback
transistor, controls a feedback path from the output of the second inverter to the
input of the first inverter.

The operation of the sample circuit of Fig. 9.12-1 is as follows. When a
binary value is to be stored in the register cell, the input pass transister is turned
on, and the feedback transistor is turned off. This is accomplished through use
of a LOAD signal ANDed with clock phase ¢; to control the gate of the pass
transistor. ¢, is low so that the feedback path is broken at this time. When the
input pass transistor is turned on, any signal applied to the D input of the register
cell is passed to the gate of the first inverter, resulting in the same logic value at
the output R of the second inverter (after two successive inversions). When the
input pass transistor is turned off, the value at the input node of the first inverter
is stored dynamically on the parasitic capacitance of that node. The value at the
output of the second inverter is actively driven and is logically equivalent to the
stored value at the input of the first inverter. During the ¢, clock phase the output
of the second inverter is fed back to the input of the first inverter, thus reinforcing
its logic value. As long as this feedback condition is applied often enough, the
quasi-static register cell will maintain its stored value.

If the register cell of Fig. 9.12-1 can maintain its stored value indefinitely,
why is this circuit connection called a guasi-static register cell rather than a static
register cell? The answer can be found by examining operation of the circuit

?p
¢ » LOAD <4
T C
T >
R
FIGURE 9.12-1

Quasi-static binary storage cell.

STRUCTURED DIGITAL CIRCUITS AND SYSTEMS 841

over a clock cycle in which a LOAD signal does not occur. Of course, while
the ¢, clock phase that controls the feedback transistor is high, the stored value
is continuously reinforced. However, when the ¢; clock phase that controls the
input pass transistor is high but the LOAD signal is low, there is no active input to
drive the gate of the first inverter. If this condition persists for too long a period,
the logic value at this input gate may change because of charge leakage. Thus,
there is a maximum time for the ¢, clock connected to the feedback transistor to
remain in the low state and still ensure the integrity of the data value stored in
the cell. This condition places a lower bound on the clock frequency when quasi-
static registers are used.

Quasi-static register cells were common in early microprocessors. For exam-
ple, registers in the Motorola 6800 series of microprocessors were composed of an
extension of the basic quasi-static cell that permitted dual-port read and write.!”
This cell, shown in Fig. 9.12-2, provides two gated load (write) signals on one
clock phase, so the register can be loaded from either of two buses. A feedback
path to refresh the stored logic value is provided on the alternate clock phase.
The controller (not shown) that generates the write signals should logically AND
them with ¢; to avoid conflict with the feedback path that is controlled by ¢, in
Fig. 9.12-2. The register output, taken from the center of the register cell, drives
a pulldown transistor. The output of this transistor is directed through pass tran-
sistors to one of two possible buses providing dual-port read. This cell requires
four control signals (each externally gated by clock phase ¢;), an alternate clock
signal ¢, to control the feedback path, two bus lines (each bus line is common
to one input and one output path), power, and ground. This cell, requiring a total
of 10 transistors, will be compared with the static register cell described next.

Write B (¢4) Read A (¢4)
Write A (¢4) Bus A Read B (¢4)
¢,
——
|| T |

H R

—

Bus B

FIGURE 9.12-2
Motorola 6800 microprocessor register cell.

842 vLSsI DESIGN TECHNIQUES FOR ANALOG AND DIGITAL CIRCUITS

9.12.2 A Static Register Cell

Fully static register cells are frequently used within finite-state machines and
within microprocessor register arrays. These static register cells are similar to
the memory cell described previously for SRAMs, but often are designed with
different constraints than those necessary for dedicated memory chips. One such
static cell is based on the classical cross-coupled set-reset (SR) latch shown in Fig.
9.12-3a. This latch uses two cross-coupled NOR gates to achieve data storage. An
equivalent NMOS transistor-level circuit for this latch is given in Fig. 9.12-3b.
That this is a static register cell is obvious because the storage does not depend
on clock signals, but only on a directly coupled feedback path.

To explain static register cell operation, the SR latch circuit of Fig. 9.12-
3b will be transformed into a static register cell in two steps. Figure 9.12-4a
shows the previous circuit split into a cross-coupled inverter pair with the set
and reset pulldown transistors physically separated from the storage element by
bus lines. These buses hold signals representing the register cell’s logic state and
its complement. Figure 9.12-4b completes the transformation by including pass
transistors between the outputs of the cross-coupled inverter pair and the buses
to the set and reset pulldown transistors. The pass transistors provide a way to
isolate the register cell from the buses. Note that if both pass transistors are on,
the circuit is equivalent to that of Fig. 9.12-3b, except for additional resistance in
the set and reset pulldown paths because of the pass transistors. This basic static
register cell consists of six transistors, four for the cross-coupled inverters and
two for the connections to the buses. A CMOS version of this cell is created by
replacing the NMOS inverters of Fig. 9.12-4 with CMOS inverters.

Because the basic register cell of Fig. 9.12-4b can be isolated from the
buses, additional six-transistor register cells can be attached between the same

ol

: (o S i

(a (b)

.||_..

FIGURE 9.12-3
Cross-coupled NOR latch: (a) logic, (b) circuit.

STRUCTURED DIGITAL CIRCUITS AND SYSTEMS 843

VDD /b VDDT

= S—lE I‘]r—a HE
(@ T i

(b)

FIGURE 9.12-4
NMOS static storage cell.

two buses. Then a particular register cell is selected for read or write by selecting
(turning on) both pass transistors associated with that cell. Figure 9.12-5 shows
four CMOS static register cells that use the same two buses for read or write of
cell data.

This static register cell is similar to those used in SRAMs. Many applica-
tions, however, do not require the considerable address decoding circuitry and
sensitive read sense amplifiers necessary for large SRAM memory chips. There
are two reasons for this. The first is size. A typical microprocessor application
might require a register array with 1024 bits compared to commercial SRAMs
with 256k bits. The smaller size reduces capacitive loading and diminishes
noise sources, allowing simplified supporting circuitry. The second factor is
organization. As explained in Sec. 9.8, a square organization requiring both
row decoding and column selection to access a single bit is preferred for SRAMs.
A typical 1024-bit microprocessor application might have 32 registers, each
containing 32 bits. Each 32-bit register has its contents accessed as a unit. Thus,
only a 5-to-32 address decoder is required to select a 32-bit register. Based on
these concepts, then, a data value can be stored simply by selecting a cell and
asserting a set or reset line. A stored value can be read by asserting the desired
select line and accepting the logic value on the data bus. When this circuit is used
within a microprocessor register array, a dual-port read is possible by controlling
the two select transistors of a cell individually. Thus, one cell can have its stored
value gated to the data bus, while a second cell has its stored value gated to
the complement data bus. Many microprocessor instructions require two input
operands, making the dual-port structure highly desirable for a register array.

Select

844 visI DESIGN TECHNIQUES FOR ANALOG AND DIGITAL CIRCUITS

Sel 1

Sel 2

Sel 3

Sel 4

Data

Voo

Q

Data

1L

¥

Vbo

L

—
E]

—

S

|— FIGURE 9.12-5
CMOS static register cell
array.

STRUCTURED DIGITAL CIRCUITS AND SYSTEMs 845

Two simple storage cells were described in this section. These are important
in digital design for applications that require static storage capability, for example
FSMs and microprocessors. Both quasi-static and fully static storage cells were
described. Individual storage cells are easily configured into n-bit wide registers
where n is set by the width of the data word. The simple design and operation of
these circuits make them ideal for many applications.

9.13 PLA-BASED FINITE-STATE MACHINES

Most digital systems are composed of combinational logic and memory com-
bined in a form called a finite-state machine (FSM) or, equivalently, a sequential
machine. A sequential machine is normally implemented as a forward path con-
taining combinational logic and a feedback path that includes memory. In classi-
cal digital systems the memory is provided by flip-flops or latches. Within MOS
integrated circuits a particularly simple form of sequential machine is possible.
This simple finite-state machine consists of a PLA that realizes the combinational
logic and a clocked shift register in the feedback path to serve as memory. A
dynamic shift register such as the one described in Sec. 9.6 is often used.

Figure 9.13-1 shows the classical form for one type of FSM, called the
Moore machine.'® This FSM is characterized by outputs that are isolated from
momentary input changes by memory. This type of FSM is of particular interest
here because an excellent integrated circuit implementation based on a PLA is
available. A block diagram of a PLA-based FSM is shown in Fig. 9.13-2, where a
PLA is augmented with pass transistors to gate its inputs and outputs. These pass
transistors in combination with the output buffers and double-rail drivers form a
clocked shift register so that the next state presented by the PLA OR plane is
available as the present state at the inputs to the PLA double-rail drivers after a
&1, ¢, clock sequence.

As discussed in Sec. 9.2, automatic PLA generation programs are available.
Based on logic equations in the sum-of-products form, a complete PLA layout
can be created and programmed to realize correctly the specified logic functions.
It is a simple task to augment a PLA generation program to include clocked
input drivers and clocked output buffers in the form shown in Fig. 9.13-2. Such
a PLA generator can be used in one of two modes: it can generate a standard

—_— — |
Inputs « . « Outputs
* | Combinational | *
>l »| Memory |—»

logic

r —I FIGURE 9.13-1

Classical finite-state machine.

846

Double-rail
Clocked drivers —— o

double

rail

VLSI DESIGN TECHNIQUES FOR ANALOG AND DIGITAL CIRCUITS

AND . OR
plane . plane

-

Clocked
aee cee output
drivers | ¢4 —*-———I Output buffers
— bufters
Inputs Outputs

FIGURE 9.13-2
FSM based on PLA with clocked stages.

PLA

consisting of combinational logic only, or it can generate a FSM formed

from a standard PLA plus clocked shift register feedback created by connecting
the output of a clocked output buffer to the input of a clocked double-rail driver.

To demonstrate the design of a FSM based on a PLA with clocked shift

register feedback, consider the following example.

Example 9.13-1. Finite-state machine Assume that 16 magnetic switches are
to be monitored remotely for a home security application. The 16 status bits cor-
responding to the state of the switches are available from the remote location
through an asynchronous serial data link as alternating bytes of data. The serial
data is received in 8-bit groups by a UART (universal asynchronous receiver/trans-
mitter) whose parallel output must be stored in two eight-bit registers that drive
LED indicators. Each register is composed of 8 D-type flip-flops activated by a
rising clock signal. The first byte of data received is displayed in one set of LED
indicators, and the alternate byte is displayed in a second set of LED indicators.
Thus, there are 16 LED indicators, one for each magnetic switch. This task can be
accomplished with a sequencer (FSM) that alternately selects one of two display
registers, A or B, to store the received data bytes. To simplify the design, assume
that the system is always synchronized with the first, third, and other odd bytes
going to display register A and the even bytes to display register B. The FSM must
also generate a data strobe signal (S) required by the UART to acknowledge that a
byte is accepted. Of course, the UART generates a data ready signal (R) whenever
a new status byte is available at its output. The logic components that compose the
receiving system are shown in Fig. 9.13-3. Show the logical design for the PLA
FSM block of this figure. .

Solution. A PLA FSM that satisfies these requirements is described by the state
diagram of Fig. 9.13-4 and the state transition table of Table 9.13-1. The FSM
waits in state g until the UART indicates that a data byte is ready by asserting the

STRUCTURED DIGITAL CIRCUITS AND SYSTEMS

Serial input from
remote location

|———-> UART
BO B7 R —‘
"t PLAFSM [* *
1’ nooﬁ 1’ e e ’8 B A <—¢2
Register A Register B
e d bt ' FIGURE 9.13-3
rDispIay A I r Display B I Block diagram for system
display.
S=1
A=1
B=0
=0
=0
=0
FIGURE 9.13-4
State diagram for status sequencer.
TABLE 9.13-1 .
State transition table for security monitoring
system
Present Next
Input state state Outputs
R Xy xy S B A
0 00 00 0 0 0
1 00 01 0 0 0
0 01 11 1 0 1
1 01 01 1 0 1
0 10 00 1 1 0
1 10 10 1 1 0
0 11 11 0 0 0
1 11 10 0 0 0

847

848 VLSI DESIGN TECHNIQUES FOR ANALOG AND DIGITAL CIRCUITS

data ready signal (R). Data ready causes a transfer to state b at the next clock,
causing a load signal (A) to display register A and a data strobe signal (S) to the
UART. It is important that the display register is loaded by the rising edge of load
signal A. Then the FSM waits in state b until the UART removes the data ready
signal (R), causing a transfer to state c. At this point, one byte of data has been
received and the value in register A updated. When a second byte from the UART
is ready, the resulting data ready signal (R) causes a transfer to state d at the next
clock, where the appropriate load signal (B) to display register B and data strobe
signal (S) are generated. Later, after data ready is removed by the UART, the FSM
returns to the first state and waits for new status data.

The state transition table (Table 9.13-1) provides the information necessary
to specify the logic operations to be performed by the PLA. Two state variables
are required to specify four different states. Call the present state variables X and
Y and the corresponding next state variables x and y. The states are encoded with
a Gray code (state a = 00, state b = 01, state ¢ = 11, state d = 10) so that only
one state variable changes for each state transition. The equations for the next state
variables and the outputs are obtained from the state transition table and are given

here.
x = RY + RX
y = RY + RX
S =XY +XY
A=XY
B=XY

From these equations, it is easily determined that a (3,5,5) PLA is required —that
is, three inputs by five product terms by five outputs. Two outputs form the next
state variables, while three other outputs generate the data strobe (S), load register
A (A), and load register B (B) signals. Figure 9.13-5 shows a complete PLA-based
FSM that implements the controller described here.

The ability to create a FSM automatically from a set of Boolean logic equa-
tions is an extremely powerful tool for digital system design. Small PLA-based
FSMs are frequently used as building blocks to construct larger digital systems
such as microprocessors and communications processors. Large PLA-based FSMs
suffer from two important limitations. A large PLA may be sparsely populated
with programming sites, resulting in excessive area to realize a function. Also,
large PLAs tend to be slower than alternative solutions when a large number of
terms must be processed. One alternative is to use several small PLA FSMs
rather than one large PLA FSM to implement required control logic; a second
alternative is described in the next section.

9.14 MICROCODED CONTROLLERS

The clocked PLA structure for FSMs explained in the previous section is an
excellent means to implement small digital controllers. The layout structure
is regular and can be generated automatically and compactly from the logic

*10u9nbas 10§ NS V'Id PAOCLD

——

. . . A ¥ I f- wl_
AAAARA == g
i VIV VLY VLY
- 1= = 1= / - =1 1= H
e T | A
LT T A
ERSaE T A
GG 1 [T oy
I_I_. I+H_ 11 -
4 SILSSILS]
b__ |X X A A H H a,

849

850 vLsI DESIGN TECHNIQUES FOR ANALOG AND DIGITAL CIRCUITS

equations for a system. For larger digital systems, the logic design to imple-
ment a clocked PLA FSM becomes unnecessarily complex and the result-
ing large PLA, if generated, would be slow. These larger systems require a
method that overcomes the disadvantages of a large clocked PLA FSM yet
emphasizes regularity in design and layout. A common method to implement
complex digital systems in a regular way is to use a memory-based structure
known as a microcoded controller.

A microcoded controller (shown in Fig. 9.14-1) comprises a memory whose
contents are called microinstructions and a next-address sequencer that directs the
execution sequence of microinstructions. A microinstruction is a set of (usually)
encoded control bits that direct the operation of the logic during a clock cycle.
In essence, a microcoded controller is a special form of computer. The execution
hardware is fixed, and the functions performed are a result of instructions placed
in the microinstruction memory. This memory is frequently read-only memory
and is thus called microROM. As discussed earlier, memories are designed with
a dense, regular structure. Because the microcoded controller consists primarily
of memory, a microcoded controller can also be regular and dense. However,
because microcoded controllers require the overhead of a next-address sequencer
that requires design time and integrated circuit area, this technique is used pri-
marily for larger machines.

In its simplest form, the microcoded controller of Fig. 9.14-1 does not
require status inputs. The next-address sequencer simply generates the next
instruction addresses in a fixed pattern, for example, by incrementing a counter. A
microcoded controller configured in this way functions as an open-loop controller
with a fixed execution sequence. If status inputs are provided, the next-address
sequencer can modify the address of the next instruction, depending on conditions
presented by the status inputs. This provides a conditional branching capability.
In either case, the function of the microcoded controller is determined primarily
by a program placed in its microROM. Conceptually, programming a microcoded
controller is similar to programming a microprocessor in machine language. In
practice, however, the programming task is extremely tedious because of the
multiplicity of individual control bits whose state must be determined for each
instruction.

Figure 9.14-2 shows a typical memory organization for a microcoded con-
troller consisting of a microROM and a memory address register (MAR). While
most semiconductor memory chips are organized with a wide address bus and a

Microprogram 2‘;:‘“
memory adaress
sequencer

kel

Control Status Simple microcoded controller.

STRUCTURED DIGITAL CIRCUITS AND SYSTEMs 851

MicroROM 'X' . d;m
4096 x 72 e address
- le— lines

~60 control lines ~
-2, address

e

Registers/ALU/shifter/buses

- J
FIGURE 9.14-2

72-bit control word MicroROM architecture.

narrow data bus (nine multiplexed address lines and one data line for most 256k
DRAMs), the memory (microROM) for a microcoded controller usually has a
wide data bus relative to its address bus (perhaps 72 or more data lines compared
with 12 or fewer address lines). Most of these data lines are dedicated to driving
control points within the system. A few data lines are used to provide next-
address information to the next-address sequencer. The next-address sequencer
uses this address information along with status inputs from the controlled process
to calculate the address of the next microinstruction.

A microROM organized as in Fig. 9.14-2 would contain almost 300k bits
(212 x 72 = 294,912) of control information and would consume a corre-
spondingly large silicon area. An alternative form for the microROM is shown
in Fig. 9.14-3. This two-level microprogram memory consists of a relatively
small microROM driving a secondary memory called a nanoROM. This orga-
nization is based on two reasonable assumptions. First, only a few of the 272
possible control word combinations of Fig. 9.14-2 are necessary in a given
system. Second, many of the control words that are necessary will be required
repeatedly. If fewer than 256 unique control words are necessary, for exam-
ple, and the microprogram memory is organized as shown in Fig. 9.14-3, only
about 50k bits (212 x 8 + 28 X 72 = 51,200) of control memory are required.
This reduction in memory size is not free; the two-level microROM is slower
than a single-level memory because a memory access must traverse two mem-
ory units to produce data. Overlapped instruction fetch and execution and care-
ful design of control circuitry to minimize additional delay can partially offset
the slower control memory.

Nanoinstruction ROM 8 Mlcro;:r;gtﬁ ction
256 x72 4096 x 8
l l T T FIGURE 9.14-3

72 control and address 12 address Two-level microprogram memory.

852

Data
bus

VLSI DESIGN TECHNIQUES FOR ANALOG AND DIGITAL CIRCUITS

- M [Next- -
MicroROM A address IR
- R |« sequencer |«

|]
— |

Registers | Shift | ALU o PC les Adgress
us

FIGURE 9.14-4
Microprogram-controlled microprocessor architecture.

A simplified block diagram for a microprogram-controlled microprocessor

is given in Fig. 9.14-4. The microprogrammed controller drives a data path with
registers, a shifter, and an arithmetic logic unit (ALU). A memory address register
(MAR), an instruction register (IR), and a program counter (PC) are also shown.
The operation of this design will be examined with the following example.

Example 9.14-1. Simple microprogrammed instruction execution Explain
how the microprogrammed controller of Fig. 9.14-4 could be used to add the con-
tents of two registers (register 4 and register 7) and return the sum to register 4. In
register transfer form, the required operation is

Register 4 <« Register 4 + Register 7

Solution. To start execution, a program memory address is placed in the PC. The
PC contents are placed on the address bus and a computer instruction is fetched
from program memory (not shown) over the data bus and placed in the IR. The
next-address sequencer uses the instruction in the IR to specify a particular starting
address in the microROM. The corresponding microprogram control word is output
from the microROM. This control word selects register 4 and subsequently gates
register 4’s contents to the ALU. If the register file is organized for dual-port read,
the same control word from the microROM simultaneously selects register 7 and
gates its contents to the ALU along a second bus. A next microROM control word
address is generated by the next-address sequencer. This address selects another
microROM control word, which causes the ALU to add its two input operands. Still
another address is provided by the next-address sequencer, and a third microROM
control word is selected. This last control word stores the result of the ALU operation
in register 4 and prepares the microprocessor to fetch the next instruction for the IR
from program memory by updating the PC contents.

This rather simplistic description of an ADD instruction demonstrates basic

operation of a microprogram-controlled data path. In many instruction sequences,
the next microROM address depends on results of an ALU operation. This allows
conditional branching to be implemented. The preceding description omits many
important considerations, including timing, pipelined operation, program counter
update, and control signal generation.

STRUCTURED DIGITAL CIRCUITS AND SYSTEMS 853

It is appropriate at this point to compare the PLA and microprogrammed
forms of FSMs. In general, a microprogrammed control unit is more complex than
the corresponding PLA FSM because of the next-address generation circuitry. In
fact, a PLA FSM can be compiled automatically once the state equations for the
system are determined; this is much more difficult for a microprogrammed FSM.
The peripheral circuitry for a microprogrammed FSM usually depends on the
application and is thus not automatically generated. For these reasons, the PLA
FSM is normally best for small, simple systems where minimum design time and
circuit area are required. However, larger systems are sometimes created through
use of several small PLA FSMs to offset the difficulties with large PLAs. The
microprogram machine is usually more desirable for larger systems, where the
additional design and area penalties can be offset by its advantages. A signifi-
cant advantage is the ability to substantially change the details of operation by
modifying the contents of the microROM prior to manufacture without changing
the underlying circuit design and layout. This may be necessary for correction of
design errors or to create new capabilities for a working design.

General agreement on the form of FSM that is most appropriate for com-
mercial microprocessor design does not exist. Recent 32-bit microprocessors have
been designed using each of these FSM forms. For example, the Bellmac 32
uses several small PLAs for its control circuitry, and the HP 9000 uses a large
microprogrammed memory to control its operation. 20

9.15 MICROPROCESSOR DESIGN

The focus of this chapter is structured forms of digital integrated circuits. The
evolution of microprocessors provides an interesting study in the development of
structured logic forms. The earliest microprocessors, the Intel 4004 and 8008,
were born to counteract the high development costs for custom large-scale inte-
grated (LSI) circuits.?! Because custom large-scale circuits had to be designed for
specific tasks, it was often difficult to reach the sales volume required to justify
the development of a custom part. This literally forced the development of a
logic form (the microprocessor) that could be tailored to many different applica-
tions by the addition of control logic (programs) contained in separate integrated
circuit devices (memory chips). Only through the large application market that
could be served could the development costs for a custom LSI circuit like the
microprocessor be recovered.

As the complexity of microprocessors has increased, the design time and
costs have also expanded. Development of structured designs using regular
logic forms, such as those discussed in this chapter along with new computer-
aided design tools, has been required to allow the evolution of microprocessor
architecture. A comparison of the Intel 4004 die photograph (Fig. 9.15-1) with
the Intel 80386 die photograph (Fig. 9.15-2) provides a vivid illustration of the
relative percentages of silicon area used for regular structures and the relative
complexity of these two microprocessors.

Today’s basic microprocessor consists of a control unit and a data path.
This is shown by Fig. 9.14-4 of the previous section, where the data path consists

854 visiDESIGN TECHNIQUES FOR ANALOG AND DIGITAL CIRCUITS

o s

E""u o

&i

FIGURE 9.15-1
Intel 4004 die photograph (Courtesy Intel Corp.).

STRUCTURED DIGITAL CIRCUITS AND SYSTEMS 835

QSQfEGiﬁiﬁiiﬁ‘

Segment
Descriptor

Barrel
Shifter
32-Bit...
Register
File

Microcode

B
“
®
]
w
W
"
B
o
®
]
]
"
i
"
i
e
"
®

FIGURE 9.15-2
Intel 80386 die photograph (Courtesy Intel Corp.).

of registers, shifter, and ALU, and the control unit contains the microROM,
MAR, next-address sequencer, IR, and PC. Although these two subsystems
(control unit and data path) may be augmented with bus interface controllers,
memory management units, cache memory, and other functions by different
manufacturers, the present discussion will focus on the control unit and the
data path as essential components of a microprocessor. The data path for a
microprocessor is usually formed with 8, 16, or 32 identical bit paths. As a result
of these identical bit paths, there is an inherent regularity within the data path for
microprocessors. In contrast, the control units have varied structures, with most
present manufacturers choosing microcoded or PLA style controllers.

856 vLs1 DESIGN TECHNIQUES FOR ANALOG AND DIGITAL CIRCUITS

9.15.1 Data Path Description

The data path, sometimes called the execution unit, is the place where the
microprocessor executes operations such as addition, subtraction, shifts, rotates,
and Boolean logical functions on data. Figure 9.15-3 shows a typical n-bit data
path structure consisting of a dual-port register array, a barrel shifter, an ALU,
interconnection buses, and support circuitry. Data flows along n parallel paths
in the horizontal direction, while control of the data flow and ALU operations is
provided vertically from the top of the data path. Execution of a typical data path
operation (see Example 9.14-1) requires selection of operands from two registers,
execution of an operation on the two selected operands, and placement of the
result in a register. The elements of the data path must be designed to facilitate
such operations.

The use of a dual-port register array is convenient for the fast execution of
microprocessor programs. This local storage is usually provided within the data
path as a small array of static memory cells. These are organized as an n X m
structure where # is the width in bits of the microprocessor data bus and m is the
number of registers provided. Because an ALU operation often requires access
to the contents of two registers before execution can commence, most register
arrays are organized with dual-port read access. With a dual-port register array,
contents from two separate registers can be fetched simultaneously to minimize
the delay before execution of an operation can begin.

The memory cell structure of a dual-port register array is quite similar to
that of an SRAM cell. There is a need, however, for two data buses and a
mechanism to allow the contents of each register to be switched to either data
bus. The memory cell used for the dual-port register array of the Berkeley RISC
processor?? is shown in Fig. 9.15-4. In this circuit, the designers took advantage
of the provision of double-rail data access to allow the contents from two registers
to be obtained simultaneously. Remember that double-rail access is normally
required to allow storage of data in a simple cross-coupled inverter storage cell.

Shift ALU
Select A Select B Timing constant operation
. i . Shift Opeération
Register address decode decode decode
~—] [—>
Data | Dual-port Barrel , Data
bus register array shifter ALU . bus
| [———

FIGURE 9.15-3
Microprocessor data path.

STRUCTURED DIGITAL CIRCUITS AND SYSTEMS 857

_L Select A

T Select B

Bus B Bus A

FIGURE 9.15-4
Dual-port register cell.

For a write operation. both data lines must be gated to the storage cell with
complementary values. However, the contents of the storage cell may be read
by gating the cell to either data line. If provision is made to drive the two select
lines, A and B, separately for a read operation, then it is possible to obtain the
data from a first register along one rail of the data bus (bus A), while the data
from a second register is obtained along the other rail of the data bus (bus B).
Of course, the data from the second bus will be the complement of the cell data
and must be inverted.

9.15.2 Barrel Shifter

A second component that is included in the data path for many microprocessors
is a structure that allows the contents of the data path to be shifted or rotated. A
variable-length shift of a bit on the data path requires the possibility of connecting
the selected bit to any one of several other bit paths. A 1-to-n multiplexer
circuit for each bit will accomplish the desired connection. An ideal means of
implementing multiplexer circuits is provided by the pass transistor available
within MOS integrated circuits.

A particularly useful circuit structure to implement a shift or rotate is known
as a barrel shifter. This circuit structure can be explained by first considering Fig.
9.15-5, which shows the circuit diagram of a general-purpose bus multiplexer
for a 4-bit data path. This multiplexer circuit requires 16 pass transistors to
allow connection of any bit line to any other bit line. If each pass transistor
could be selected individually, 16 control lines would be required. Because most
requirements are for parallel shifts with all bits moved the same number of bit
positions, only four shift possibilities are really necessary. Figure 9.15-6 shows
a better circuit with the pass transistors connected in groups of four, reducing
control line requirements from 16 to 4 separate control lines, 50-53. A particular
control line might be selected by encoding a 2-bit control field to drive a 2-to-
4 decoder circuit. The individual decoder output would enable the proper shift
control line. For a 32-bit data path, 1024 pass transistors are necessary to allow the
desired shift operations. Assuming only parallel shifts, 32 control lines selected
by a 5-bit encoded control field are sufficient.

