EE 434 Assignment 7 Fall 2005

Problem 1 Give all of the two-input Boolean functions and identify which of those are useful.

Problem 2 The circuits shown have been proposed as digtal inverters. Determine which will behave as digital inverters and which will not. If the circuit performs as a digital inverter, determine V_H and V_L . Assume the devices are all in the process with $\mu C_{OX}=100 \mu A/V^2$, $V_T=1V$, $\gamma=0$ and $\lambda=0$.

Problem 3 Extra Credit Only

What is the maximum value of W_1 in the circuit (a) of the previous problem that can be used if this circuit is to perform as a digital inverter?

Problem 4 A Boolean System is supposed to have an output F that is high when the Boolean inputs A and B are high or when the inputs Cand D are high and E is low or when the input A is low and the input E is high.

- a) Give a behavioral description of this system in terms of the input variables A,B,C,D,E and F.
- b) Write Verilog code describing this system at the behavioral level
- c) Give a gate-level structural descripton of this system if the only gates that are available are NOR gates with any number of inputs.
- d) Write Verilog code describing this system at the gate level
- e) Give a transistor-level physical description of this system. You may use any logic style you are familiar with. You need not size the devices.

Problem 5 Determine the trip-point, V_H , and V_L of the inverter under the following scenarios and comment on how device dimensions affect these key points.

- a) $W_1=0.6u, W_2=1.8u. L_1=0.6u, L_2=0.6u$
- b) $W_1=3u, W_2=9u. L_1=3u, L_2=3u$
- c) $W_1=0.6u, W_2=0.6u, L_1=0.6u, L_2=0.6u$
- d) $W_1=0.6u, W_2=0.6u, L_1=0.6u, L_2=6u$

Assume $\mu_n C_{OX} = 100 u A/V^2$, $V_{Tn} = 1V$, $V_{Tp} = -1V$, $\mu_n/\mu_p = 3$, $\gamma = 0$ and $\lambda = 0$.

Problem 6 A switch-level model of an inverter is shown where the resistors R_{PU} and R_{PD} are the "Pull-up" and "Pull-down" resistors, C_{IN} is the input capacitance to the inverter, and where the notation $X^{[m]}$ indicates a quantized value of the quantity X, quantized to the m-bit level. Thus $V_{IN}^{[1]}$ is a 1-bit (i.e. two-level) quantization of V_{IN} and is thus a Boolean variable. Assume the quantization level if V_{TRIP} .

- Find the switch-level model of the inverters described in Problem 5 if $C_{OX}=2fF/\mu^2$
- b) Determine t_{HL} and t_{LH} for the inverters in Problem 5 the inverter drives an identical structure
- c) Comment on how the device sizing affects the propagation delay of an inverter.

Problem 7 Extra Credit Only

A 5-transistor memory cell is loaded with X_D when φ is high and holds the value of X_D when φ is low. Assume M_1 , M_2 , M_3 and M_4 all have $W=1\mu$ and $L=2\mu$ and the length of M_5 is 1μ . If a high Boolean signal is 5V and a low Boolean signal is 0V, determine the minimum value of W_5 needed to guarantee that the value of X_D can be written into the memory cell.

Problem 8

A static CMOS inverter with Wn=Wp=2u and Ln=Lp=1u designed in a 0.5u CMOS process is driving a 1pF load. Determine t_{HL} and t_{LH} for the output of this inverter.

Problem 9

A poly interconnect that is 2u wide and 50u long is used to connect a low impedance signal to a 500fF load. Assume the capacitance density of this poly layer is $.5 \text{fF/u}^2$ and the sheet resistance of the poly is 20 ohms/square.

a) If this interconnect is modeled by the series connection of 4 T-connected segments shown, determine the value of the resistors R_T and the capacitor C_T in each of these segments.

- b) Determine the Elmore delay associated with this interconnect model
- c) Compare the Elmore delay with that obtained with a Spice simulation

Problem 10 Problem 4.1 of Text (Assume $\mu_n/\mu_p=3$ and that the reference inverter has Wp=3Wn and Lp=Ln).

Problem 11Problem 4.8 of TextProblem 12Problem 4.9 of Text