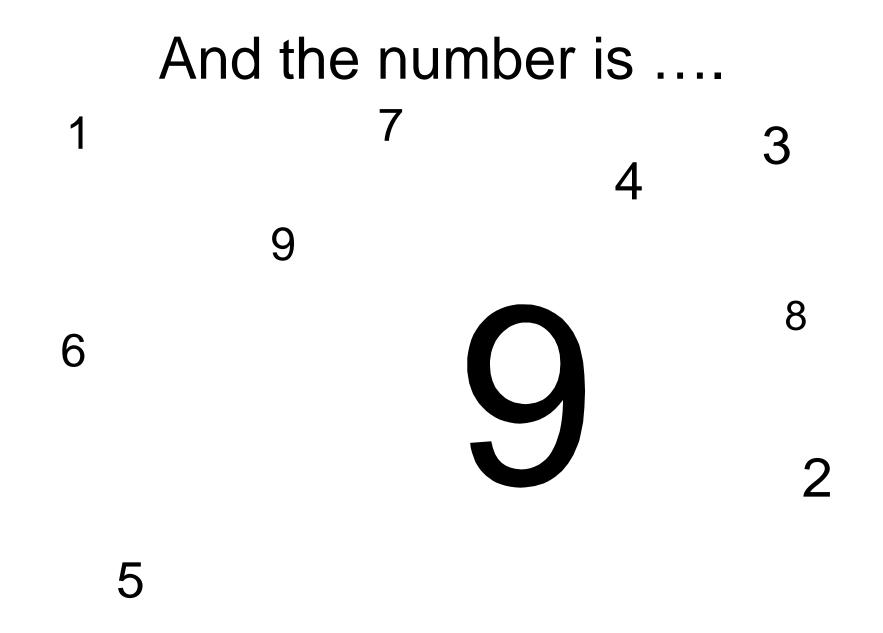

EE 434 Lecture 11


Process Flow

Device Modeling in Semiconductor Processes

Quiz 5

Three methods of attaching the die to a package or circuit were discussed. Give two of them.

Quiz 5

Three methods of attaching the die to a package or circuit were discussed. Give two of them.

Solution:

Eutectic Solder Preform Conductive Epoxy

Interconnects Introduce Parasitic Capacitances

Vertical Layer to Layer $C = A_{OI} C_{D}$ Lateral Layer to Layer More difficult to Model Diffusion Bottom (area dependent) $C = A_D C_D$ Sidewall (fringe) $C = P_D C_{DI}$ Back-End Processing Steps Not closely coupled with specific front-end process Dicing Die Attach Bonding

Packaging

Interconnects Introduce Parasitic Capacitances

Vertical Layer to Layer $C = A_{OI} C_{D}$ Lateral Layer to Layer More difficult to Model Diffusion Bottom (area dependent) $C = A_D C_D$ Sidewall (fringe) $C = P_D C_{DI}$ Back-End Processing Steps Not closely coupled with specific front-end process Dicing Die Attach Bonding

Packaging

Basic Semiconductor Processes

MOS (Metal Oxide Semiconductor)

n-ch

- 1. NMOS
- 2. PMOS
- 3. CMOS
- Basic Device:
- Niche Device:
- Other Devices:

p-ch n-ch & p-ch MOSFET MESFET Diode BJT Resistors Capacitors Schottky Diode

Basic Semiconductor Processes

Bipolar

- 1. T²L
- 2. ECL
- 3. I²L
- 4. Linear ICs
 - Basic Device: BJT (Bipolar Junction Transistor)
 - Niche Devices: HBJT (Heterojunction Bipolar Transistor) HBT
 - Other Devices: Dio

Diode Resistor Capacitor Schottky Diode JFET (Junction Field Effect Transistor)

Basic Semiconductor Processes

Other Processes

- Thin and Thick Film Processes
 - Basic Device: Resistor
- BiMOS or BiCMOS
 - Combines both MOS & Bipolar Processes
 - Basic Devices: MOSFET & BJT
- SiGe
 - BJT with HBT implementation
- SiGe / MOS
 - Combines HBT & MOSFET technology
- SOI / SOS (Silicon on Insulator / Silicon on Sapphire)
- Twin-Well & Twin Tub CMOS

- Very similar to basic CMOS but more optimal transistor char.

Review from Last Time Summary of Devices by Processes

- Standard CMOS Process
 - MOS Transistors
 - n-channel
 - p-channel
 - Capacitors
 - Resistors
 - Diodes
 - BJT (in some processes)
 - npn
 - pnp
 - JFET (in some processes)
 - n-channel
 - p-channel
- Standard Bipolar Process
 - BJT
 - npn
 - pnp
 - JFET
 - n-channel
 - p-channel
 - Diodes
 - Resistors
 - Capacitors
- Niche Devices
 - Photodetectors (photodiodes, phototransistors, photoresistors)
 - MESFET
 - HBT
 - Schottky Diode (not Shockley)
 - MEM Devices
 -

Process Flow

Processing Steps Have Been Discussed

Wafer Prep, Photolithography, Deposition, Etching, Diffusion,

Combining these Processing Steps to Make Useful Integrated Circuits constitutes a Process Flow

Each Process has a unique process flow Process flow constitutes very valuable IP

APPENDIX 2B PROCESS CHARACTERIZATION OF A GENERIC CMOS PROCESS

TABLE 2B.1Process scenario of major process steps in typical p-well CMOS processa

1.	Clean wafer	
2.	GROW THIN OXIDE	
3.	Apply photoresist	
4.	PATTERN P-WELL	(MASK #1)
5.	Develop photoresist	
6.	Deposit and diffuse p-type impurities	
7.	Strip photoresist	
8.	Strip thin oxide	
9.	Grow thin oxide	
10.	Apply layer of Si ₃ N ₄	
11.	Apply photoresist	
12.	PATTERN Si_3N_4 (active area definition)	(MASK #2)
13.	Develop photoresist	
14.	Etch Si_3N_4	
15.	Strip photoresist	
	Optional field threshold voltage adjust	
	A.1 Apply photoresist	
	A.2 PATTERN ANTIMOAT IN SUBSTRATE	(MASK #A1)
	A.3 Develop photoresist	
	A.4 FIELD IMPLANT (n-type)	
	A.5 Strip photoresist	
16.	GROW FIELD OXIDE	
17.	Strip Si ₃ N ₄	
18.	Strip thin oxide	
19.	GROW GATE OXIDE	
20.	POLYSILICON DEPOSITION (POLY I)	
21.	Apply photoresist	
22.	PATTERN POLYSILICON	(MASK #3)
23.	Develop photoresist	
24.	ETCH POLYSILICON	
25.	Strip photoresist	
	Optional steps for double polysilicon process	
	B.1 Strip thin oxide	
	B.2 GROW THIN OXIDE	
	B.3 POLYSILICON DEPOSITION (POLY II)	
	B.4 Apply photoresist	
	B.5 PATTERN POLYSILICON	(MASK #B1)
	B.6 Develop photoresist	
	B.7 ETCH POLYSILICON	
	B.8 Strip photoresist	
	B.9 Strip thin oxide	
		· · · · · · · · · · · · · · · · · · ·

,

TABLE 2B.1(Continued)

26. 27.	Apply photoresist PATTERN P-CHANNEL DRAINS AND SOURCES AND	(MASK #4)
27.	P ⁺ GUARD RINGS (p-well ohmic contacts)	(MASK #4)
28.	Develop photoresist	
29.	p ⁺ IMPLANT	
30.	Strip photoresist	
31.	Apply photoresist	
32.	PATTERN N-CHANNEL DRAINS AND SOURCES AND N ⁺ GUARD RINGS (top ohmic contact to substrate)	(MASK # 5)
33.	Develop photoresist	
34.	n ⁺ IMPLANT	
35.	Strip photoresist	
36.	Strip thin oxide	
37.	Grow oxide	
38.	Apply photoresist	
39.	PATTERN CONTACT OPENINGS	(MASK #6)
40.	Develop photoresist	
41. 42.	Etch oxide	
42. 43.	Strip photoresist APPLY METAL	
45. 44.	Apply photoresist	
45.	PATTERN METAL	(MASK #7)
46.	Develop photoresist	(MASK # 7)
47.	Etch metal	
48.	Strip photoresist	
	Optional steps for double metal process	
	C.1 Strip thin oxide	
	C.2 DEPOSIT INTERMETAL OXIDE	
	C.3 Apply photoresist	
	C.4 PATTERN VIAS	(MASK #C1)
	C.5 Develop photoresist	
	C.6 Etch oxide	
	C.7 Strip photoresist	
	C.8 APPLY METAL (Metal 2)	
	C.9 Apply photoresist	
	C.10 PATTERN METAL	(MASK #C2)
	C.11 Develop photoresist	,
	C.12 Etch metal	
40	C.13 Strip photoresist	
49. 50.	APPLY PASSIVATION	
50. 51.	Apply photoresist PATTERN PAD OPENINGS	(MASY #0)
51. 52.	Develop photoresist	(MASK #8)
53.	Etch passivation	
54.	Strip photoresist	
55.	ASSEMBLE, PACKAGE AND TEST	

^aMajor functional steps shown in capital letters.

.

TABLE 2B.2Design rules for a typical p-well CMOS process(See Table 2B.3 in color plates for graphical interpretation)

		Dimensions	
		Microns	Scalable
1. p-w	ell (CIF Brown, Mask $\#1^a$)		••
1.1	Width	5	4λ
1.2	Spacing (different potential)	15	10λ
1.3	Spacing (same potential)	9	6λ
. Acti	ve (CIF Green, Mask #2)		
2.1	Width	4	2λ
2.2	Spacing	4	2λ
2.3	p ⁺ active in n-subs to p-well edge	8	6λ
2.4	n ⁺ active in n-subs to p-well edge	7	5λ
2.5	n ⁺ active in p-well to p-well edge	4	2λ
2.6	p ⁺ active in p-well to p-well edge	1	λ
. Poly	(POLY I) (CIF Red, Mask #3)		
3.1	Width	3	2λ
3.2	Spacing	3	2λ
3.3	Field poly to active	2	λ
3.4	Poly overlap of active	3	2λ
3.5	Active overlap of poly	4	2λ
ι. p ⁺	select (CIF Orange, Mask #4)		
•. p 4.1	Overlap of active $\frac{\pi}{2}$	2	λ
4.2	Space to n^+ active	2	λ
4.2	Overlap of channel ^{b}	3.5	2λ
4.4	Space to channel ^b	3.5	2λ
4.5	Space to p^+ select	3	2λ
4.6	Width	3	2λ
	tact ^c (CIF Purple, Mask #6)	-	
5. Con 5.1	Square contact, exactly	3 × 3	$2\lambda \times 2\lambda$
5.2	Rectangular contact, exactly	3 × 8	$2\lambda \times 6\lambda$
5.3	Space to different contact	3	2λ
5.4	Poly overlap of contact	2	λ
5.5	Poly overlap in direction of metal 1	2.5	2λ
5.6	Space to channel	3	2λ
5.7	Metal 1 overlap of contact	2	λ
5.8	Active overlap of contact	2	λ
5.9	p^+ select overlap of contact	3	2λ
5.10		3×8	$2\lambda \times 6\lambda$
	al 1^d (CIF Blue, Mask #7)		
 Met 6.1 	Width	3	22
6.1 6.2	Spacing	4	2 <i>α</i> 3λ
6.2 6.3	Maximum current density	4 0.8 mA/μ	$0.8 \text{ mA}/\mu$
0.3	maximum current density	0.0 mr. µ	0.0 mm/µ

TABLE 2B.2(Continued)

			Dimensions			
			Microns	Scalable		
7.	Via ^e	(CIF Purple Hatched, Mask #C1)				
	7.1	Size, exactly	3 × 3	$2\lambda \times 2\lambda$		
	7.2	Separation	3	2λ		
	7.3	Space to poly edge	4	2λ		
	7.4	Space to contact	. 3	2λ		
	7.5	Overlap by metal 1	2	λ		
	7.6	Overlap by metal 2	2	λ		
	7.7	Space to active edge	3	2λ		
8.	Metal	2 (CIF Orange Hatched, Mask #C2)				
	8.1	Width	5	3λ		
	8.2	Spacing	5	3λ		
	8.3	Bonding pad size	100×100	$100 \ \mu \times 100 \ \mu$		
	8.4	Probe pad size	75×75	75 µ × 75 µ		
	8.5	Bonding pad separation	50	50 µ		
	8.6	Bonding to probe pad	30	30 µ		
	8.7	Probe pad separation	30	30 µ		
	8.8	Pad to circuitry	40	40 µ		
	8.9	Maximum current density	$0.8 \text{ mA}/\mu$	$0.8 \text{ mA}/\mu$		
9.	Passiv	vation ^f (CIF Purple Dashed, Mask #8))			
	9.1	Bonding pad opening	90 × 90	90 µ × 90 µ		
	9.2	Probe pad opening	65 × 65	65 µ × 65 µ		
10.	Metal	2 crossing coincident metal 1 and pol	y ^g			
	10.1	Metal 1 to poly edge spacing	•			
		when crossing metal 2	2	λ		
	10.2	Rule domain	2	λ		
11.	Electu	Electrode (POLY II) ^h (CIF Purple Hatched, Mask #A1)				
	11.1	Width	3	2λ		
	11.2	Spacing	3	2λ		
		POLY I overlap of POLY II	2	λ		
	11.4		3	2λ		

^aMask numbers are relative to the process scenario of Table 2B.1. CIF format discussed in footnote of Table 2A.2.

^bAdd 2.5 microns for a source/drain width of 3μ for worst-case mask misalignment.

^cNo contact to poly inside active.

^d For single metal process, pads are made with metal 1 following design rules 8.3–8.8.

^eVia must be on a flat surface; metal 1 must be under a via.

f There must be metal 2 under the pad openings in a double-metal process.

^gObjective: Avoidance of too large a step for metal 2.

^hPOLY I must always be under POLY II.

TABLE 2B.3Graphical interpretation of CMOS design rules.

(See color plate 6 in insert section)

TABLE 2B.4Process parameters for a typical^a p-well CMOS process

	Typical	Tolerance b	Units
Square law model	parameters		
V_{10} (threshold voltage)			
n-channel (V_{TN0})	0.75	± 0.25	v
p-channel $(V_{\rm TP0})$	-0.75	± 0.25	v
K'(conduction factor)			•
n-channel	24	± 6	$\mu A/V^2$
p-channel	8	± 1.5	μ A/V ²
γ (body effect)			1/2
n-channel	0.8	± 0,4	V ^{1/2}
p-channel	0.4	± 0.2	V ^{1/2}
λ (channel length modulation)			1
n-channel	0.01	± 50%	V ⁻¹
p-channel	0.02	± 50%	V^{-1}
ϕ (surface potential)			
n- and p-channel	0.6	± 0.1	V
Process parar	neters		
μ (channel mobility)			
n-channel	710		$cm^2/(V \cdot s)$
p-channel	230		$cm^2/(V \cdot s)$
Doping	•		
n ⁺ active	5	±4	10 ¹⁸ /cm ³
p ⁺ active	5	±4	$10^{17}/cm^3$
p-well	5	±2	10 ¹⁶ /cm ³
n-substrate	1	±0.1	$10^{16}/cm^3$
Physical featur	re sizes		
T _{OX} (gate oxide thickness)	500	± 100	Å
Total lateral diffusion			
n-channel	0.45	± 0.15	μ
p-channel	0.6	± 0.3	μ
Diffusion depth	·		
n ⁺ diffusion	0.45	± 0.15	μ
p ⁺ diffusion	0.6	± 0.3	μ
p-well	3.0	± 30%	μ
Insulating layer s	eparation		
POLY I to POLY II	800	± 100	Å
Metal 1 to Substrate	1.55	± 0.15	μ
Metal 1 to Diffusion	0.925	± 0.25	μ
POLY I to Substrate (POLY I on field oxide)	0.75	± 0.1	μ
Metal 1 to POLY I	0.87	± 0.7	μ
Metal 2 to Substrate	2.7	± 0.25	μ
Metal 2 to Metal I	1.2	± 0.1	μ
Metal 2 to POLY I	2.0	± 0.07	μ μ
$N_{0.0}$: $K' = u cor = 24E-6 \neq (1/c)$)(* 7)≃	49.7E-6	

.

TABLE 2B.4 (Continued)

	Typical	Tolerance ^b	Units
Capacitances ^a	I		
C_{OX} (gate oxide capacitance, n- and p-channel)	0.7	±0.1	fF/μ^2
POLY I to substrate, poly in field	0.045	±0.01	fF/μ^2
POLY II to substrate, poly in field	0.045	± 0.01	fF/μ^2
Metal 1 to substrate, metal in field	0.025	± 0.005	fF/μ^2
Metal 2 to substrate, metal in field	0.014	± 0.002	fF/μ^2
POLY I to POLY II	0.44	±0.05	fF/μ^2
POLY I to Metal 1	0.04	±0.01	fF/μ^2
POLY I to Metal 2	0.039	± 0.003	fF/μ^2
Metal 1 to Metal 2	0.035	±0.01	fF/μ^2
Metal 1 to diffusion	0.04	± 0.01	fF/μ^2
Metal 2 to diffusion	0.02	±0.005	fF/μ^2
n ⁺ diffusion to p-well (junction, bottom)	0.33	±0.17	fF/μ^2
n ⁺ diffusion sidewall (junction, sidewall)	2.6	±0.6	fF/μ
p ⁺ diffusion to substrate (junction, bottom)	0.38	±0.12	fF/μ^2
p ⁺ diffusion sidewall (junction, sidewall)	3.5	±2.0	fF/μ
p-well to substrate (junction, bottom)	0.2	±0.1	fF/μ^2
p-well sidewall (junction, sidewall)	1.6	±1.0	fF/μ
Resistances			
Substrate	25	±20%	Ω-cm
p-well	5000	± 2500	Ω/\Box
n ⁺ diffusion	35	±25	Ω/\Box
p ⁺ diffusion	80	±55	Ω/\Box
Metal	0.003	±25%	Ω/\Box
Poly	25	$\pm 25\%$	Ω/\Box
Metal 1–Metal 2 via (3 $\mu \times 3 \mu$ contact)	<0.1		Ω
Metal 1 contact to POLY I (3 $\mu \times 3 \mu$ contact)	<10		Ω
Metal 1 contact to n^+ or p^+ diffusion			
$(3 \ \mu \times 3 \ \mu \text{ contact})$	<5		Ω
Breakdown voltages, leakage currents, migration	n currents a	nd operating	conditions
Punchthrough voltages (Gate oxide, POLY I to POLY II)	>10		v
Diffusion reverse breakdown voltage	>10		v
p-well to substrate reverse breakdown voltage	>20		v
Metal 1 in field threshold voltage	>10		v
Metal 2 in field threshold voltage	>10		v
Poly-field threshold voltage	>10		v
Maximum operating voltage	7.0		v
n ⁺ diffusion to p-well leakage current	0.25		fA/μ^2
p^+ diffusion to substrate leakage current	0.25		fA/μ^2
p-well leakage current	0.25		fA/μ^2
Maximum metal current density	0.8		mA/μ width
Maximum device operating temperature	200		°C

^aParameters based upon a 3μ ($\lambda = 1.5\mu$) CMOS process.

^bThe tolerance is in terms of the absolute value of the parameter relative to processing variations from run to run. Matching characteristics on a die are much better. For example, chip-level matching of V_{T0} is in the 1 mV to 20 mV range, and K' matching is in the 0.5% to 5% range.¹⁸⁻²²

^cImpurity concentration varies with depth.

^dJunction capacitances at zero bias.

.

i

TABLE 2B.5SPICE MOSFET model parameters of a typicalp-well CMOS process (MOSIS^a)

Parameter (Level 2 model)	n-channel	p-channel	Units
VTO	0.827	-0.895	v
KP	32.87	15.26	μ A/V ²
GAMMA	1.36	0.879	$V^{1/2}$
PHI	0.6	0.6	V
LAMBDA	1.605E-2	4.709E-2	V^{-1}
CGSO	5.2E-4	4.0E-4	fF/μ width
CGDO	5.2E-4	4.0E - 4	fF/μ width
RSH	25	95	Ω/\Box
CJ	3.2E-4	2.0E-4	ρ /1 F /μ ²
MJ	0.5	0.5	
CJSW	9.0E-4	4.5E-4	$\rho / f / \mu$ perimeter
MJSW	0.33	0.33	•
rox	500	500	Å
ISUB	1.0E16	1.12E14	$1/cm^3$
ISS	0	0	$1/cm^2$
VFS	1.235E12	8.79E11	$1/cm^2$
TPG	1	-1	
КJ	0.4	0.4	μ
LD	0.28	0.28	μ
UO	200	100	$cm^2/(V \cdot s)$
JCRIT	9.99E5	1.64E4	V/cm
JEXP	1.001E-3	0.1534	
/MAX	1.0E5	1.0E5	m/s
NEFF	1.001E-2	1.001E-2	
DELTA	1.2405	1.938	

 a The SPICE parameters were obtained by assuming them to be empirical parameters and then fitting measured device characteristics to the mathematical equations which comprise the model by using a numerical optimization algorithm. This approach gives good fit to the model but causes a deviation from the typical parameters of Table 2A.4 and results in parameter relationships which may not be self-consistent with some of the fundamental relationships developed in Chapters 3 and 4.

APPENDIX 2C PROCESS CHARACTERIZATION OF A GENERIC BIPOLAR PROCESS

TABLE 2C.1

	ss scenario of major process steps in typical	bipolar process
	lean wafer (p-type)	
	ROW THIN OXIDE	
	pply photoresist	
	ATTERN n ⁺ BURIED LAYER	(MASK #1)
	evelop photoresist	
	EPOSITION AND DIFFUSION OF n-BURIED LAYER	
	rip photoresist	
	rip oxide	
	ROW EPITAXIAL LAYER (n-type)	
	row oxide	,
	pply photoresist	
12. PA	ATTERN p ⁺ ISOLATION REGIONS	(MASK #2)
13. D	evelop photoresist	, ,
14. E	ch oxide	
15. D	EPOSITION AND DIFFUSION OF p ⁺ ISOLATION	
	rip photoresist	
	row oxide	
0	ptional high-resistance p-diffusion	
A	1 Apply photoresist	·· · · · · · · · · · · · · · · · · · ·
	2 PATTERN p-RESISTORS	(MASK #A)
	3 Develop photoresist	(
	4 Etch oxide	
Α	5 DEPOSITION AND DIFFUSION OF p-RESISTORS	
	6 Strip photoresist	
	7 Grow oxide	
	oply photoresist	
	TTERN BASE REGIONS	(MASK #3)
	evelop photoresist	$(MASK \pi 3)$
	ch oxide	
	EPOSITION AND DIFFUSION OF p-TYPE BASE	
	rip photoresist	
	ow oxide	
	pply photoresist	
	TTERN n-TYPE EMITTER REGIONS	(MASK #4)
	evelop photoresist	(IVIASK #4)
	ch Oxide	•
	DEPOSITION AND DIFFUSION	· •
	ip photoresist	· . · ·
	ow oxide	•
-	,	the second second
1	ply photoresist TTERN CONTACT OPENINGS	ALLOT UP
		(MASK #5)
	velop photoresist	
	ch oxide	
	ip Photoresist	
	PLY METAL	,
· · · · · · · · · · · · · · · · · · ·	ply photoresist	
9. PA	TTERN METAL	(MASK #6)

TABLE 2C.1(Continued)

40.	Develop photoresist	
41.	ETCH METAL	
42.	Strip photoresist	
43.	APPLY PASSIVATION	
44.	Apply photoresist	· · · · · ·
45.	PATTERN PAD OPENINGS	(MASK #7)
46.	Develop photoresist	
47.	Etch passivation	
48.	Strip photoresist	
49.	ASSEMBLE, PACKAGE, AND TEST	

^aMajor functional steps shown in capital letters.

TABLE 2C.2 Design rules for a typical bipolar process ($\lambda = 2.5 \mu$) (See Table 2C.3 in color plates for graphical interpretation)

	Dimension
1. n ⁺ buried collector diffusion (Yellow, Mask #1)	
1.1 Width	3λ
1.2 Overlap of p-base diffusion (for vertical npn)	2λ
1.3 Overlap of n ⁺ emitter diffusion (for collector contact	t of
vertical npn)	2λ
1.4 Overlap of p-base diffusion (for collector and emitter	of lateral pnp) 2λ
1.5 Overlap of n ⁺ emitter diffusion (for base contact of l	lateral pnp) 2λ
. Isolation diffusion (Orange, Mask #2)	
2.1 Width	4λ
2.2 Spacing	24λ
2.3 Distance to n^+ buried collector	14λ
p-base diffusion (Brown, Mask #3)	
3.1 Width	3λ
3.2 Spacing	5λ
3.3 Distance to isolation diffusion	14λ
3.4 Width (resistor)	3λ
3.5 Spacing (as resistor)	3λ
n ⁺ emitter diffusion (Green, Mask #4) 4.1 Width	3λ
4.1 Whath 4.2 Spacing	3λ
4.2 spacing 4.3 p-base diffusion overlap of n^+ emitter diffusion (emi	
4.4 Spacing to isolation diffusion (for collector contact)	$\frac{12\lambda}{12\lambda}$
4.5 Spacing to p-base diffusion (for base contact)	
4.6 Spacing to p-base diffusion (for collector contact of w	1 1/
. Contact (Black, Mask #5)	
5.1 Size (exactly)	$4\lambda \times 4\lambda$
5.2 Spacing	2λ λ
5.3 Metal overlap of contact	λ 2λ
5.4 n^+ emitter diffusion overlap of contact	2λ 2λ
5.5 p-base diffusion overlap of contact $5.6 = base te = \frac{1}{2}$	2λ 3λ
5.6 p-base to n ⁺ emitter	5λ 4λ
5.7 Spacing to isolation diffusion	7/

TABLE 2C.2(Continued)

		Dimension
6.	Metalization (Blue, Mask #6)	
	6.1 Width	2λ
	6.2 Spacing	2λ
	6.3 Bonding pad size	$100 \ \mu \times 100 \ \mu$
	6.4 Probe pad size	75 μ × 75 μ
	6.5 Bonding pad separation	50 µ
	6.6 Bonding to probe pad	30 µ
	6.7 Probe pad separation	30 µ
	6.8 Pad to circuitry	40 µ
	6.9 Maximum current density	$0.8 \text{ mA}/\mu$ width
7.	Passivation (Purple, Mask #7)	
	7.1 Minimum bonding pad opening	90 μ × 90 μ
	7.2 Minimum probe pad opening	65 µ × 65 µ

TABLE 2C.3 Graphical interpretation of bipolar design rules.

(See color plate 7 in insert section)

TABLE 2C.4Process parameters for a typical bipolar processa

Parameter	Typical	Tolerance ^b	Units		
Ebers-Moll model parameters					
$\beta_{\rm F}$ (forward β)					
npn-vertical	100	50 to 200			
pnp-lateral					
$(at I_{\rm C} = 500 \ \mu {\rm A})$	10	±20%			
$(at I_{\rm C} = 200 \ \mu {\rm A})$	6	±20%			
$\beta_{\rm R}$ (reverse β)					
npn-vertical	1.5	±0.5			
pnp—lateral					
$(at I_{\rm C} = 500 \ \mu {\rm A})$	5	±20%			
$(at I_{\rm C} = 200 \ \mu {\rm A})$	3	$\pm 20\%$			
$V_{\rm AF}$ (forward Early voltage)					
npn-vertical	100	$\pm 30\%$	v		
pnp—lateral	150	$\pm 30\%$	v		
V_{AR} (reverse Early voltage)					
npn-vertical	150	±30%	v		
pnp-lateral	150	±30%	v		
$J_{\rm S}$ (saturation current density)					
npn-vertical	2.6×10^{-7}	-50%to + 100%	pA/μ^2		
pnp-lateral		-50%to + 100%	pA/μ emitter perimeter		

TABLE 2C.4(Continued)

(00)	(linuea)
------	----------

Parameter	Typical	Tolerance ^b	Units
	Dopi	ng	
n ⁺ emitter	104	±30%	10 ¹⁶ /cm ³
p-base	-		
Surface	105	$\pm 20\%$	$10^{16}/cm^3$
Junction	1	$\pm 20\%$	$10^{16}/cm^3$
Epitaxial layer	0.3	$\pm 20\%$	$10^{16}/cm^3$
Substrate	0.08	±25%	10 ¹⁶ /cm ³
	Physical fea	ature size	
Diffusion depth			
n+ emitter diffusion	1.3	±5%	μ
p-base diffusion	2.6	±5%	μ
p-resistive diffusion	0.3	±5%	μ
n-epitaxial layer	10.4	±5%	μ
n ⁺ buried collector diffusion			
Into epitaxial	3.9	$\pm 5\%$	μ
Into substrate	7.8	±5%	μ
Oxide thickness			
Metal to epitaxial	1.4	±30%	μ
Metal to p-base	0.65	$\pm 30\%$	μ
Metal to n ⁺ emitter	0.4	±30%	μ
	Capacit	ances	-
Metal to epitaxial	0.022	±30%	fF/μ^2
Metal to p-base diffusion	0.045	$\pm 30\%$	fF/μ^2
Metal to n^+ emitter diffusion	0.078	±30%	fF/μ^2
n ⁺ buried collector to substrate (junction, bottom)	0.062	±30%	fF/μ^2
Epitaxial to substrate (junction, bottom)	0.062	±30%	fF/μ^2
Epitaxial to substrate (junction, sidewall)	1.6	±30%	fF/ μ perimeter
Epitaxial to p-base diffusion (junction, bottom)	0.14	±30%	fF/μ^2
Epitaxial to p-base diffusion (junction, sidewall)	7.9	±30%	fF/ μ perimeter
p-base diffusion to n ⁺ emitter diffusion (junction, bottom)	0.78	±30%	fF/μ^2
p-base diffusion to n ⁺ emitter diffusion (junction, sidewall)	3.1	±30%	fF/ μ perimeter

TABLE 2C.4(Continued)

Parameter	Typical	Tolerance ^b	Units	
Resistance and resistivity				
Substrate resistivity	16	±25%	$\Omega \cdot cm$	
n ⁺ buried collector diffusion	17	±35%	Ω / \Box	
Epitaxial layer	1.6	±20%	$\mathbf{\Omega}\cdot\mathbf{cm}$	
p-base diffusion	160	$\pm 20\%$	Ω / \Box	
p-resistive diffusion (optional)	1500	±40%	Ω / \Box	
n ⁺ emitter diffusion	4.5	±30%	Ω / \Box	
Metal	0.003		Ω / \Box	
Contacts $(3\mu \times 3\mu)$	<4		Ω	
Metal-n ⁺ emitter (contact plus series resistance to BE junction)	<1		Ω	
Metal-p-base ^c (contact plus series resistance)	70		Ω	
Metal-Epitaxial ^d (contact plus series resistance to BC junction)	120		Ω	

Breakdown voltages, leakage currents, migration currents, and operating conditions

Reverse breakdown voltages			
n ⁺ emitter to p-base	6.9	±50 mV	V
p-base to epitaxial	70	±10	v
Epitaxial to substrate	>80		v
Maximum operating voltage	40		v
Substrate leakage current	0.16		fA/μ^2
Maximum metal current density	0.8		mA/μ width
Maximum device operating temperature (design)	125		°C
Maximum device operating temperature (physical)	225		°C

^a Process parameters based on the process of Tables 2C.1 and 2C.2.

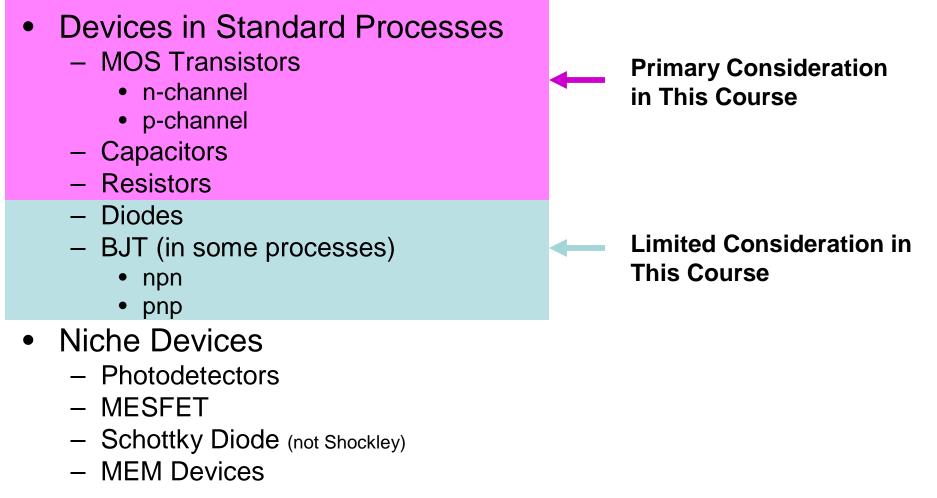
^b The tolerance is in terms of the absolute value of the parameter relating to processing variation from run to run. Matching characteristics on a die are much better. For example, $\beta_{\rm F}$ matching for identical devices on the same die to $\pm 5\%$ and $J_{\rm S}$ matching to $\pm 5\%$ are achievable.

^c The base series resistance is strongly dependent on layout. Value given is for double base contact.

d The collector series resistance is strongly layout-dependent. It is primarily dependent on the vertical distance between contact and buried layer and buried layer to base.

TABLE 2C.5				
SPICE model	parameters	of typical	bipolar	process

Parameter ^{<i>a,b,c</i>}	Vertical npn	Lateral pnp	Units
	npn	P''P	
IS ^c	0.1	0.78	fA
BF	80	225	
NF	1	1	
VAF	100	150	v
IKF	100	0.1	mA
ISE	0.11	0.15	fA
NE	1.44	1.28	
BR	1.5		
NR	1	1	
VAR ^b	19	38	v
ISC		1.5	fA
NC	1.44	1.28	
RB	70	250	Ω.
RE	1	4	Ω
RC	120	130	Ω
CJE	0.62	0.48	pF
VTE	0.69	0.65	v
MJE	0.33	0.40	
TF	0.45	40	ns
CJC	1.9	0.48	pF
VJC	0.65	0.65	v
MJC	0.4	0.4	
XCJC	0.5	0	
TR	22.5	2000	ns
CJS ^d	1.30	0	pF
VJS	0.49	0	pF
MJS	0.38	0	•


^a Parameters are defined in Chapters 3 and 4.

^bSome of these Gummel-Poon parameters differ considerably from those given in Table 2C.4. They have been obtained from curve fitting and should give good results with computer simulations. The parameters of Table 2C.4 should be used for hand analysis.

^cParameters that are strongly area-dependent are based upon an npn emitter area of 390 μ^2 and perimeter of 80 μ , a base area of 2200 μ^2 and perimeter of 200 μ , and a collector area of 10,500 μ^2 and perimeter of 425 μ . The lateral pnp has rectangular collectors and emitters spaced 10 μ apart with areas of 230 μ^2 and perimeter is 345 μ .

 d CJS is set to zero for the lateral transistor because it is essentially nonexistent. The parasitic capacitance from base to substrate, which totals 1.0 pF for this device, must be added externally to the BJT.

Basic Devices

-

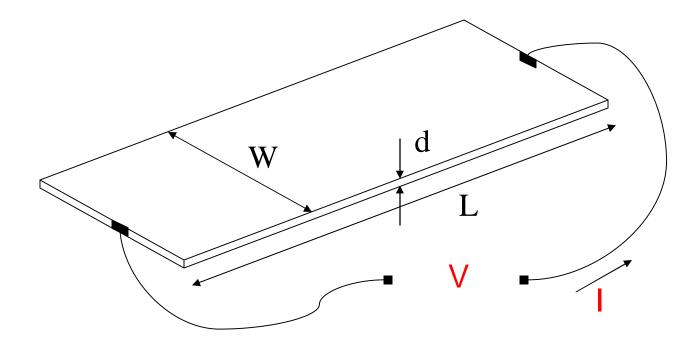
Basic Devices and Device Models

- Resistor
- Capacitor
- MOSFET
- Diode
- BJT

Basic Devices and Device Models

- Resistor
- Capacitor
- MOSFET
- Diode
- BJT
- Resistors and Capacitors were discussed previously in the context of interconnects
- Were generally considered parasitics in earlier discussions
- Will now be considered as desired components
- Models obviously will be very similar or identical

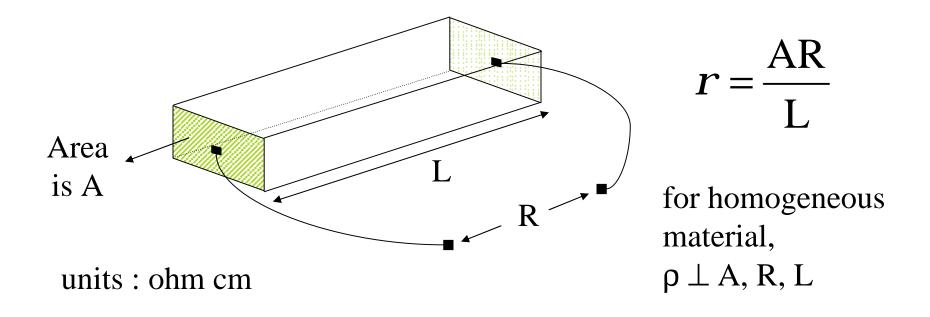
Basic Devices and Device Models

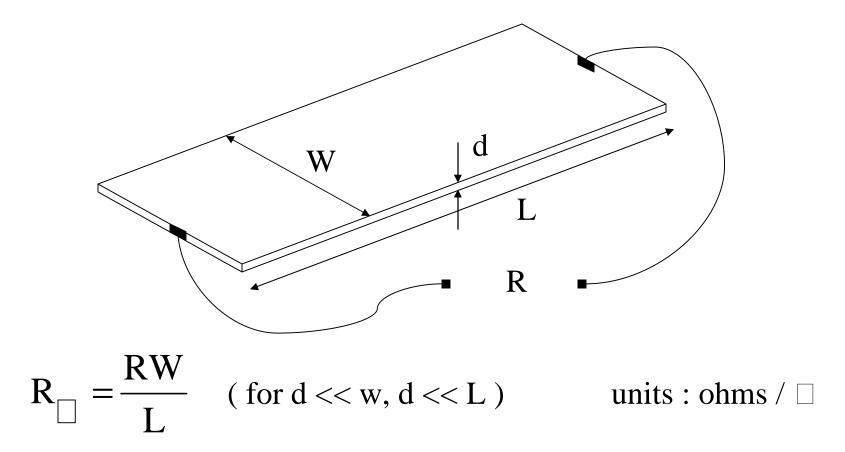

Resistor

- Capacitor
- MOSFET
- Diode
- BJT

Resistors

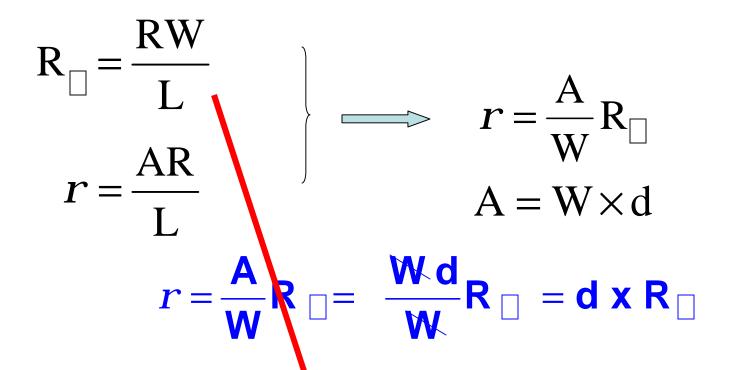
- Generally thin-film devices
- Almost any thin-film layer can be used as a resistor
 - Diffused resistors
 - Poly Resistors
 - Metal Resistors
 - "Thin-film" adders (SiCr or NiCr)
- Subject to process variations, gradient effects and local random variations
- Often temperature and voltage dependent
 - Ambient temperature
 - Local Heating
- Nonlinearities often a cause of distortion when used in circuits
- Trimming possible resistors
 - Laser,links,switches


Resistor Model

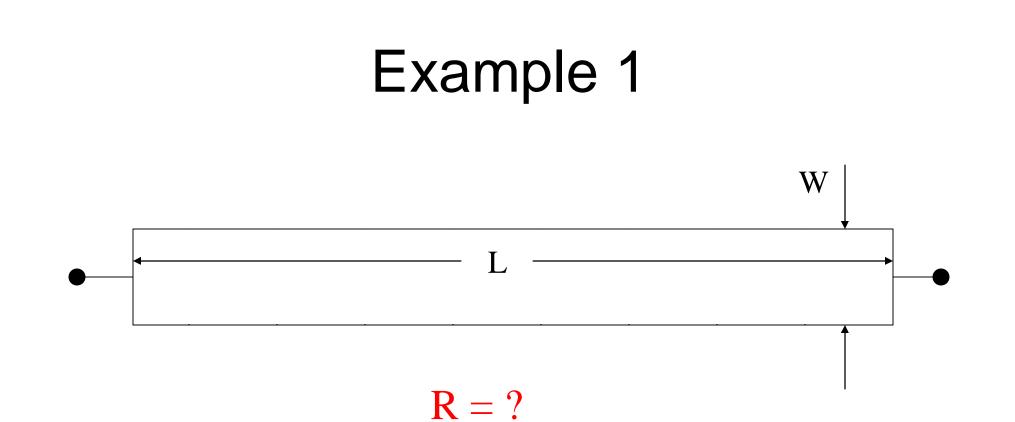

Model: $\mathbf{R} = \frac{\mathbf{V}}{\mathbf{I}}$

Resistivity

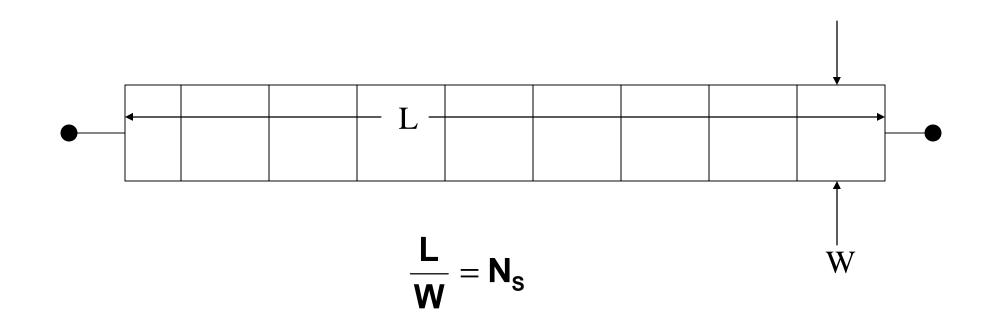
 Volumetric measure of conduction capability of a material

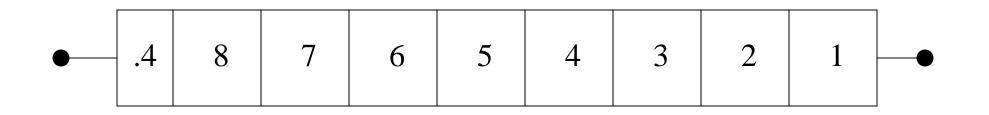


Sheet Resistance

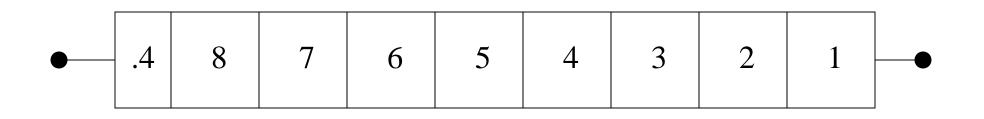

for homogeneous materials, R_{\square} is independent of W, L, R

Relationship between ρ and R_{\Box}

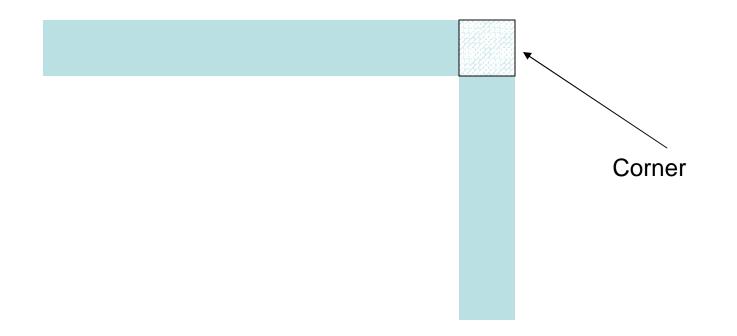



Number of squares, N_{s} , often used instead of L / W in determining resistance of film resistors

 $R=R_{\Box}N_{S}$

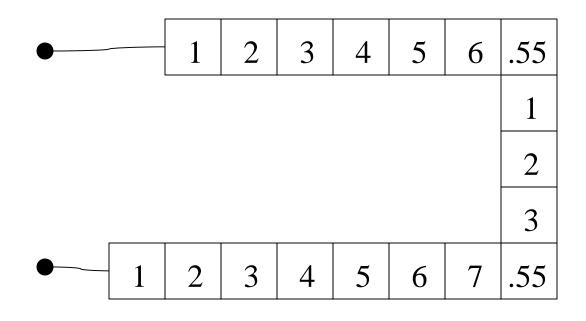


Example 1



R = ?

R = ? $N_{S}=8.4$ $R = R_{\Box}$ (8.4)


Corners in Film Resistors

Rule of Thumb: .55 squares for each corner

Determine R if $R_{\Box} = 100 \Omega / \Box$

$$N_{\rm S}$$
=17.1
R = (17.1) R_□
R = 1710 Ω

Resistivity of Materials used in Semiconductor Processing

- Cu: 1.7*E*-6 Ωcm
- AI: 2.7*E*-4 Ωcm
- Gold: 2.4*E*-6 Ωcm
- Platinum: $3.0E-6 \Omega cm$
- n-Si: .25 to 5 Ωcm
- intrinsic Si: $2.5E5 \Omega$ cm
- SiO₂: $E14 \Omega cm$

Temperature Coefficients

Used for indicating temperature sensitivity of resistors & capacitors **For a resistor:**

$$TCR = \left(\frac{1}{R}\frac{dR}{dT}\right)_{op. temp}^{10^6} \qquad ppm/^{\circ}C$$

This diff eqn can easily be solved if TCR is a constant

$$R(T_{2}) = R(T_{1})e^{\frac{T_{2}-T_{1}}{10^{6}}TCR}$$

$$R(T_2) \approx R(T_1) \left[1 + (T_2 - T_1) \frac{TCR}{10^6} \right]$$

Identical Expressions for Capacitors

Voltage Coefficients

Used for indicating voltage sensitivity of resistors & capacitors For a resistor:

$$VCR = \left(\frac{1}{R}\frac{dR}{dV}\right)_{ref voltage}^{10^{6}} ppm/V$$

This diff eqn can easily be solved if VCR is a constant

$$R(V_2) = R(V_1) e^{\frac{V_2 - V_1}{10^6} VCR}$$

$$\mathbf{R}(\mathbf{V_2}) \approx \mathbf{R}(\mathbf{V_1}) \left[1 + (\mathbf{V_2} - \mathbf{V_1}) \frac{\mathbf{VCR}}{\mathbf{10^6}} \right]$$

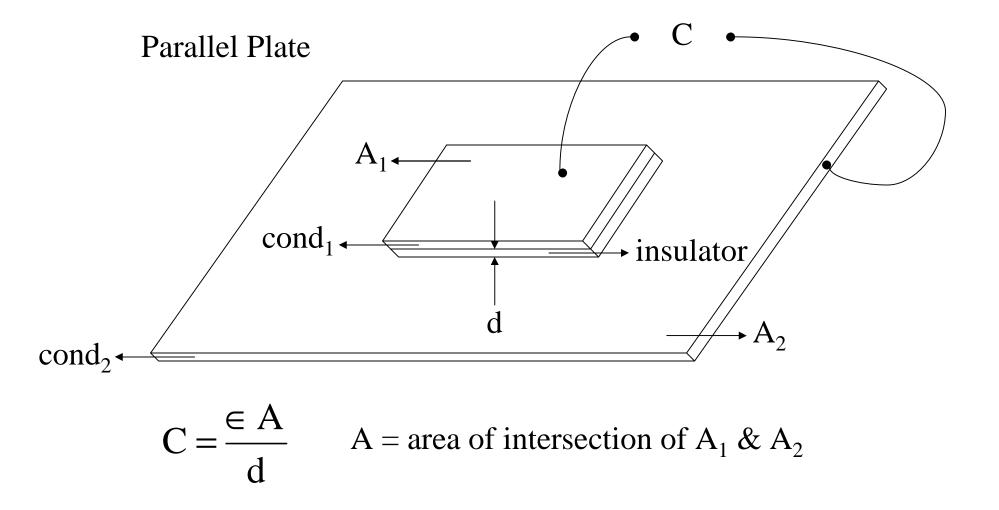
Identical Expressions for Capacitors

Temperature and Voltage Coefficients

- Temperature and voltage coefficients often quite large for diffused resistors
- Temperature and voltage coefficients often quite small for poly and metal resistors

Capacitance and Resistance in Interconnects

 See MOSIS WEB site for process parameters that characterize parasitic resistances and capacitances

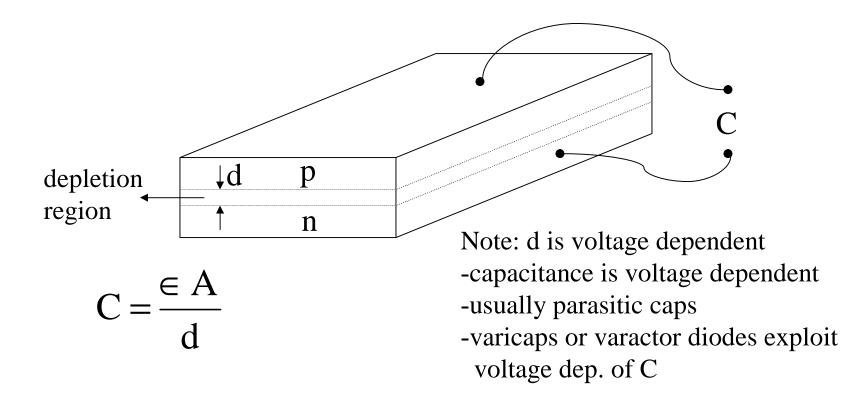

www.mosis.org

Basic Devices and Device Models

• Resistor

- Capacitor
 - MOSFET
 - Diode
 - BJT

Capacitance


Capacitance

Parallel Plate

If
$$C_d = \frac{Cap}{unit area}$$
 $C = C_d A$ where $C_d = \frac{\epsilon}{d}$

Capacitance

Junction Capacitor

