#### EE 434 Lecture 12

Process Flow (wrap up)

Device Modeling in Semiconductor Processes

# Quiz 6

How have process engineers configured a process to assure that the thickness of the gate oxide for the p-channel devices is nominally the same as that for the n-channel devices?





# Quiz 6

How have process engineers configured a process to assure that the thickness of the gate oxide for the p-channel devices is nominally the same as that for the n-channel devices?

Solution:

The same polysilicon layer is used to form the gates of both the n-channel and the p-channel transistors

 $SiO_2$  is stripped and then regrown to assure uniformity of thin oxide across the whole wafer.

#### **Process Flow**

#### Processing Steps Have Been Discussed

Wafer Prep, Photolithography, Deposition, Etching, Diffusion,

#### Combining these Processing Steps to Make Useful Integrated Circuits constitutes a Process Flow

Each Process has a unique process flow Process flow constitutes very valuable IP

#### APPENDIX 2B PROCESS CHARACTERIZATION OF A GENERIC CMOS PROCESS

#### TABLE 2B.1Process scenario of major process steps in typical p-well CMOS processa

| 1.  | Clean wafer                                   |             |
|-----|-----------------------------------------------|-------------|
| 2.  | GROW THIN OXIDE                               |             |
| 3.  | Apply photoresist                             |             |
| 4.  | PATTERN P-WELL                                | (MASK #1)   |
| 5.  | Develop photoresist                           |             |
| 6.  | Deposit and diffuse p-type impurities         |             |
| 7.  | Strip photoresist                             |             |
| 8.  | Strip thin oxide                              |             |
| 9.  | Grow thin oxide                               |             |
| 10. | Apply layer of Si <sub>3</sub> N <sub>4</sub> |             |
| 11. | Apply photoresist                             |             |
| 12. | PATTERN $Si_3N_4$ (active area definition)    | (MASK #2)   |
| 13. | Develop photoresist                           |             |
| 14. | Etch Si <sub>3</sub> N <sub>4</sub>           |             |
| 15. | Strip photoresist                             |             |
|     | Optional field threshold voltage adjust       |             |
|     | A.1 Apply photoresist                         |             |
|     | A.2 PATTERN ANTIMOAT IN SUBSTRATE             | (MASK #A1)  |
|     | A.3 Develop photoresist                       |             |
|     | A.4 FIELD IMPLANT (n-type)                    |             |
|     | A.5 Strip photoresist                         |             |
| 16. | GROW FIELD OXIDE                              |             |
| 17. | Strip Si <sub>3</sub> N <sub>4</sub>          |             |
| 18. | Strip thin oxide                              |             |
| 19. | GROW GATE OXIDE                               |             |
| 20. | POLYSILICON DEPOSITION (POLY I)               |             |
| 21. | Apply photoresist                             |             |
| 22. | PATTERN POLYSILICON                           | (MASK #3)   |
| 23. | Develop photoresist                           |             |
| 24. | ETCH POLYSILICON                              |             |
| 25. | Strip photoresist                             |             |
|     | Optional steps for double polysilicon process |             |
|     | B.1 Strip thin oxide                          |             |
|     | B.2 GROW THIN OXIDE                           |             |
|     | B.3 POLYSILICON DEPOSITION (POLY II)          |             |
|     | B.4 Apply photoresist                         | at at the   |
|     | B.5 PATTERN POLYSILICON                       | (MASK # BI) |
|     | B.6 Develop photoresist                       |             |
|     | B.7 ETCH POLYSILICON                          |             |
|     | B.8 Strip photoresist                         |             |
|     | B.9 Strip thin oxide                          |             |

,

TABLE 2B.1(Continued)

| 26.         | Apply photoresist                                           |             |
|-------------|-------------------------------------------------------------|-------------|
| 27.         | PATTERN P-CHANNEL DRAINS AND SOURCES AND                    | (MASK #4)   |
|             | P <sup>+</sup> GUARD RINGS (p-well ohmic contacts)          |             |
| 28.         | Develop photoresist                                         |             |
| 29.         | p <sup>+</sup> IMPLANT                                      |             |
| 30.         | Strip photoresist                                           |             |
| 31.         | Apply photoresist                                           |             |
| 32.         | PATTERN N-CHANNEL DRAINS AND SOURCES AND                    | (MASK #5)   |
|             | N <sup>+</sup> GUARD RINGS (top ohmic contact to substrate) |             |
| 33.         | Develop photoresist                                         |             |
| 34.         | n <sup>+</sup> IMPLANT                                      |             |
| 35.         | Strip photoresist                                           |             |
| 36.         | Strip thin oxide                                            |             |
| 37.         | Grow oxide                                                  |             |
| 38.         | Apply photoresist                                           |             |
| 39.         | PATTERN CONTACT OPENINGS                                    | (MASK #6)   |
| 40.         | Develop photoresist                                         |             |
| 41.         | Etch oxide                                                  |             |
| 42.         | Strip photoresist                                           |             |
| 43.         | APPLY METAL                                                 |             |
| 44.         | Apply photoresist                                           |             |
| 45.         | PATTERN METAL                                               | (MASK #7)   |
| 46.         | Develop photoresist                                         |             |
| 47.         | Etch metal                                                  |             |
| 48.         | Strip photoresist                                           |             |
|             | Optional steps for double metal process                     |             |
|             | C.1 Strip thin oxide                                        |             |
|             | C.2 DEPOSIT INTERMETAL OXIDE                                |             |
|             | C.3 Apply photoresist                                       | a char llan |
|             | C.4 PATTERN VIAS                                            | (MASK #C1)  |
|             | C.5 Develop photoresist                                     |             |
|             | C.6 Etch oxide                                              |             |
|             | C.7 Strip photoresist                                       |             |
|             | C.8 APPLY METAL (Metal 2)                                   |             |
|             |                                                             | ALLOW HOD   |
|             | C.10 PATTERN METAL                                          | (MASK #C2)  |
|             | C.11 Develop photoresist                                    |             |
|             | C.12 Etch metai                                             |             |
| 40          | A DELY DA SSIVATION                                         |             |
| 49.<br>50   | APPLI PASSIVATION                                           |             |
| 50.         | Apply photoresist                                           | OLON HON    |
| 51.<br>52   | TAI IENIN FAD UPEINIINUS<br>Develor photomoist              | (MASK #8)   |
| 52.<br>53   | Etch possivation                                            |             |
| 55.<br>54   | Strin photoresist                                           |             |
| 54.<br>55   | ASSEMDIE DACKAGE AND TEST                                   |             |
| <i>JJ</i> . | ASSEMBLE, FACKAGE AND TEST                                  |             |

<sup>a</sup>Major functional steps shown in capital letters.

.

#### TABLE 2B.2Design rules for a typical p-well CMOS process(See Table 2B.3 in color plates for graphical interpretation)

|    |                                                    | Dimensions           |                                       |  |
|----|----------------------------------------------------|----------------------|---------------------------------------|--|
|    |                                                    | Microns              | Scalable                              |  |
| 1. | p-well (CIF Brown, Mask $#1^a$ )                   |                      | · · · · · · · · · · · · · · · · · · · |  |
|    | 1.1 Width                                          | 5                    | 4λ                                    |  |
|    | 1.2 Spacing (different potential)                  | 15                   | 10λ                                   |  |
|    | 1.3 Spacing (same potential)                       | 9                    | 6λ                                    |  |
| 2. | Active (CIF Green, Mask #2)                        |                      |                                       |  |
|    | 2.1 Width                                          | 4                    | 2λ                                    |  |
|    | 2.2 Spacing                                        | 4                    | 2λ                                    |  |
|    | 2.3 p <sup>+</sup> active in n-subs to p-well edge | 8                    | 6λ                                    |  |
|    | 2.4 n <sup>+</sup> active in n-subs to p-well edge | 7                    | 5λ                                    |  |
|    | 2.5 n <sup>+</sup> active in p-well to p-well edge | 4                    | 2λ                                    |  |
|    | 2.6 p <sup>+</sup> active in p-well to p-well edge | 1                    | λ                                     |  |
| 3. | Poly (POLY I) (CIF Red, Mask #3)                   |                      |                                       |  |
|    | 3.1 Width                                          | 3                    | 2λ                                    |  |
|    | 3.2 Spacing                                        | 3                    | 2λ                                    |  |
|    | 3.3 Field poly to active                           | 2                    | λ                                     |  |
|    | 3.4 Poly overlap of active                         | 3                    | 2λ                                    |  |
|    | 3.5 Active overlap of poly                         | 4                    | 2λ                                    |  |
| 4. | p <sup>+</sup> select (CIF Orange, Mask #4)        |                      |                                       |  |
|    | 4.1 Overlap of active                              | 2                    | λ                                     |  |
|    | 4.2 Space to $n^+$ active                          | 2                    | λ                                     |  |
|    | 4.3 Overlap of channel <sup>b</sup>                | 3.5                  | 2λ                                    |  |
|    | 4.4 Space to channel <sup>b</sup>                  | 3.5                  | 2λ                                    |  |
|    | 4.5 Space to p <sup>+</sup> select                 | 3                    | 2λ                                    |  |
|    | 4.6 Width                                          | 3                    | 2λ                                    |  |
| 5. | Contact <sup>c</sup> (CIF Purple, Mask #6)         |                      |                                       |  |
| 2. | 5.1 Square contact, exactly                        | $3 \times 3$         | $2\lambda \times 2\lambda$            |  |
|    | 5.2 Rectangular contact, exactly                   | 3 × 8                | $2\lambda \times 6\lambda$            |  |
|    | 5.3 Space to different contact                     | 3                    | 2λ                                    |  |
|    | 5.4 Poly overlap of contact                        | 2                    | λ                                     |  |
|    | 5.5 Poly overlap in direction of metal 1           | 2.5                  | 2λ                                    |  |
|    | 5.6 Space to channel                               | 3                    | 2λ                                    |  |
|    | 5.7 Metal 1 overlap of contact                     | 2                    | λ                                     |  |
|    | 5.8 Active overlap of contact                      | 2                    | λ                                     |  |
|    | 5.9 p <sup>+</sup> select overlap of contact       | 3                    | 2λ                                    |  |
|    | 5.10 Subs./well shorting contact, exactly          | 3 × 8                | $2\lambda \times 6\lambda$            |  |
| 6. | Metal 1 <sup>d</sup> (CIF Blue, Mask #7)           |                      |                                       |  |
| •• | 6.1 Width                                          | 3                    | 2λ                                    |  |
|    | 6.2 Spacing                                        | 4                    | 3λ                                    |  |
|    | 6.3 Maximum current density                        | $0.8 \text{ mA}/\mu$ | $0.8 \text{ mA}/\mu$                  |  |
|    | -                                                  |                      |                                       |  |

#### **TABLE 2B.2**(Continued)

|     |                                                                         |                                                                    | Dimensions       |                              |  |  |  |
|-----|-------------------------------------------------------------------------|--------------------------------------------------------------------|------------------|------------------------------|--|--|--|
|     |                                                                         |                                                                    | Microns          | Scalable                     |  |  |  |
| 7.  | Via <sup>e</sup>                                                        | (CIF Purple Hatched, Mask #C1)                                     |                  |                              |  |  |  |
|     | 7.1                                                                     | Size, exactly                                                      | $3 \times 3$     | $2\lambda \times 2\lambda$   |  |  |  |
|     | 7.2                                                                     | Separation                                                         | 3                | 2λ                           |  |  |  |
|     | 7.3                                                                     | Space to poly edge                                                 | 4                | 2λ                           |  |  |  |
|     | 7.4                                                                     | Space to contact                                                   | 3                | 2λ                           |  |  |  |
|     | 7.5                                                                     | Overlap by metal 1                                                 | 2                | λ                            |  |  |  |
|     | 7.6                                                                     | Overlap by metal 2                                                 | 2                | λ                            |  |  |  |
|     | 7.7                                                                     | Space to active edge                                               | 3                | 2λ                           |  |  |  |
| 8.  | Meta                                                                    | 1 2 (CIF Orange Hatched, Mask #C2)                                 |                  |                              |  |  |  |
|     | 8.1                                                                     | Width                                                              | 5                | 3λ                           |  |  |  |
|     | 8.2                                                                     | Spacing                                                            | 5                | 3λ                           |  |  |  |
|     | 8.3                                                                     | Bonding pad size                                                   | $100 \times 100$ | $100 \ \mu \times 100 \ \mu$ |  |  |  |
|     | 8.4                                                                     | Probe pad size                                                     | $75 \times 75$   | 75 μ × 75 μ                  |  |  |  |
|     | 8.5                                                                     | Bonding pad separation                                             | 50               | 50 µ                         |  |  |  |
|     | 8.6                                                                     | Bonding to probe pad                                               | 30               | 30 µ                         |  |  |  |
|     | 8.7                                                                     | Probe pad separation                                               | 30               | 30 µ                         |  |  |  |
|     | 8.8                                                                     | Pad to circuitry                                                   | 40               | 40 µ                         |  |  |  |
|     | 8.9                                                                     | Maximum current density                                            | 0.8 mA/µ         | $0.8 \text{ mA}/\mu$         |  |  |  |
| 9.  | Passiv                                                                  | Passivation <sup><math>f</math></sup> (CIF Purple Dashed, Mask #8) |                  |                              |  |  |  |
|     | 9.1                                                                     | Bonding pad opening                                                | 90 × 90          | 90 µ × 90 µ                  |  |  |  |
|     | 9.2                                                                     | Probe pad opening                                                  | 65 × 65          | 65 µ × 65 µ                  |  |  |  |
| 10. | Metal 2 crossing coincident metal 1 and poly <sup>g</sup>               |                                                                    |                  |                              |  |  |  |
|     | 10.1                                                                    | when crossing metal 2                                              | 2                | λ                            |  |  |  |
|     | 10.2                                                                    | Rule domain                                                        | 2                | λ                            |  |  |  |
| 11  | Electrode (POLV II) <sup>h</sup> (CIE Purple Hatched Mask # $\Delta$ 1) |                                                                    |                  |                              |  |  |  |
| 11. | 11.1                                                                    | Width                                                              | 3                | 2λ                           |  |  |  |
|     | 11.2                                                                    | Spacing                                                            | 3                | 2λ                           |  |  |  |
|     | 11.3                                                                    | POLY I overlap of POLY II                                          | 2                | λ.                           |  |  |  |
|     | 11.4                                                                    | Space to contact                                                   | 3                | 2λ                           |  |  |  |
|     |                                                                         | •                                                                  | 2                |                              |  |  |  |

<sup>a</sup>Mask numbers are relative to the process scenario of Table 2B.1. CIF format discussed in footnote of Table 2A.2.

<sup>b</sup>Add 2.5 microns for a source/drain width of  $3\mu$  for worst-case mask misalignment.

<sup>c</sup>No contact to poly inside active.

<sup>d</sup> For single metal process, pads are made with metal 1 following design rules 8.3–8.8.

<sup>e</sup>Via must be on a flat surface; metal 1 must be under a via.

f There must be metal 2 under the pad openings in a double-metal process.

<sup>g</sup>Objective: Avoidance of too large a step for metal 2.

<sup>h</sup>POLY I must always be under POLY II.

#### TABLE 2B.3Graphical interpretation of CMOS design rules.

(See color plate 6 in insert section)

#### TABLE 2B.4Process parameters for a typical<sup>a</sup> p-well CMOS process

|                                          | Typical    | Tolerance <sup>b</sup>  | Units                             |
|------------------------------------------|------------|-------------------------|-----------------------------------|
| Square law model                         | parameters |                         |                                   |
| $V_{10}$ (threshold voltage)             |            |                         |                                   |
| n-channel (V <sub>TN0</sub> )            | 0.75       | ± 0.25                  | v                                 |
| p-channel $(V_{\rm TP0})$                | -0.75      | ± 0.25                  | v                                 |
| K'(conduction factor)                    |            |                         |                                   |
| n-channel                                | 24         | ± 6                     | $\mu A/V^2$                       |
| p-channel                                | 8          | ± 1.5                   | $\mu A/V^2$                       |
| $\gamma$ (body effect)                   |            |                         |                                   |
| n-channel                                | 0.8        | ± 0,4                   | V <sup>1/2</sup>                  |
| p-channel                                | 0.4        | $\pm 0.2$               | V <sup>1/2</sup>                  |
| $\lambda$ (channel length modulation)    |            |                         |                                   |
| n-channel                                | 0.01       | ± 50%                   | $V^{-1}$                          |
| p-channel                                | 0.02       | ± 50%                   | $V^{-1}$                          |
| $\phi(surface potential)$                |            |                         |                                   |
| n- and p-channel                         | 0.6        | ± 0.1                   | v                                 |
| Process paran                            | neters     |                         |                                   |
| $\mu$ (channel mobility)                 |            |                         |                                   |
| n-channel                                | 710        |                         | $cm^2/(V \cdot s)$                |
| n-channel                                | 230        |                         | $cm^2/(V \cdot s)$                |
| Dominor                                  |            |                         |                                   |
| Doping                                   |            |                         |                                   |
| n <sup>+</sup> active                    | 5          | ±4                      | 10 <sup>18</sup> /cm <sup>3</sup> |
| p <sup>+</sup> active                    | 5          | ±4                      | 10 <sup>17</sup> /cm <sup>3</sup> |
| p-well                                   | 5          | ±2                      | 10 <sup>16</sup> /cm <sup>3</sup> |
| n-substrate                              | 1          | ±0.1                    | 10 <sup>16</sup> /cm <sup>3</sup> |
| Physical featur                          | e sizes    |                         |                                   |
| $T_{\rm OX}$ (gate oxide thickness)      | 500        | ± 100                   | Å                                 |
| Total lateral diffusion                  |            |                         |                                   |
| n-channel                                | 0.45       | $\pm 0.15$              | ц                                 |
| p-channel                                | 0.6        | $\pm 0.3$               | u v                               |
| Diffusion depth                          |            |                         | P**                               |
| n <sup>+</sup> diffusion                 | 0.45       | $\pm 0.15$              | n.                                |
| p <sup>+</sup> diffusion                 | 0.6        | +0.3                    | μ.<br>                            |
| p-well                                   | 3.0        | $\pm 30\%$              | μ<br>μ                            |
| Insulating layer se                      | eparation  |                         |                                   |
|                                          | 800        | + 100                   | Å                                 |
| Metal 1 to Substrate                     | 1 55       | $\pm 100$ $\pm 0.15$    | A<br>                             |
| Metal 1 to Diffusion                     | 0.075      | $\pm 0.12$<br>+ 0.25    | μ<br>                             |
| DOIVIto Substrate (DOIVI on field oxide) | 0.925      | $\pm 0.23$<br>$\pm 0.1$ | μ                                 |
| Matal 1 to DOLY I                        | 0.75       | $\pm 0.1$               | μ<br>                             |
| Matal 2 to Substrate                     | 0.0/       | $\pm 0.7$               | μ                                 |
| Ivicial 2 to Substrate                   | 2.1        | ± 0.25                  | μ                                 |
| Ivicial 2 to Metal I                     | 1.2        | $\pm 0.1$               | μ                                 |
|                                          | 2.0        | ± 0.07                  | μ                                 |
| Nove: K'= 4 Cox 24E-6 \$ (710            | )(♥])~=    | 49.7E-6                 |                                   |

.

#### TABLE 2B.4 (Continued)

|                                                            | Typical    | Tolerance <sup>b</sup> | Units          |
|------------------------------------------------------------|------------|------------------------|----------------|
| Capacitances <sup>d</sup>                                  |            |                        |                |
| $C_{OX}$ (gate oxide capacitance, n- and p-channel)        | 0.7        | ±0.1                   | $fF/\mu^2$     |
| POLY I to substrate, poly in field                         | 0.045      | ±0.01                  | $fF/\mu^2$     |
| POLY II to substrate, poly in field                        | 0.045      | $\pm 0.01$             | $fF/\mu^2$     |
| Metal 1 to substrate, metal in field                       | 0.025      | $\pm 0.005$            | $fF/\mu^2$     |
| Metal 2 to substrate, metal in field                       | 0.014      | $\pm 0.002$            | $fF/\mu^2$     |
| POLY I to POLY II                                          | 0.44       | ±0.05                  | $fF/\mu^2$     |
| POLY I to Metal 1                                          | 0.04       | ±0.01                  | $fF/\mu^2$     |
| POLY I to Metal 2                                          | 0.039      | ±0.003                 | $fF/\mu^2$     |
| Metal 1 to Metal 2                                         | 0.035      | ±0.01                  | $fF/\mu^2$     |
| Metal 1 to diffusion                                       | 0.04       | $\pm 0.01$             | $fF/\mu^2$     |
| Metal 2 to diffusion                                       | 0.02       | ±0.005                 | $fF/\mu^2$     |
| $n^+$ diffusion to p-well (junction, bottom)               | 0.33       | $\pm 0.17$             | $fF/\mu^2$     |
| n <sup>+</sup> diffusion sidewall (junction, sidewall)     | 2.6        | ±0.6                   | fF/μ           |
| $p^+$ diffusion to substrate (junction, bottom)            | 0.38       | $\pm 0.12$             | $fF/\mu^2$     |
| $p^+$ diffusion sidewall (junction, sidewall)              | 3.5        | ±2.0                   | fF/μ           |
| p-well to substrate (junction, bottom)                     | 0.2        | $\pm 0.1$              | $fF/\mu^2$     |
| p-well sidewall (junction, sidewall)                       | 1.6        | ±1.0                   | fF/μ           |
| Resistances                                                |            |                        |                |
| Substrate                                                  | 25         | ±20%                   | Ω-cm           |
| p-well                                                     | 5000       | $\pm 2500$             | $\Omega/\Box$  |
| n <sup>+</sup> diffusion                                   | 35         | ±25                    | $\Omega/\Box$  |
| $p^+$ diffusion                                            | 80         | ±55                    | $\Omega/\Box$  |
| Metal                                                      | 0.003      | ±25%                   | $\Omega/\Box$  |
| Poly                                                       | 25         | ±25%                   | $\Omega/\Box$  |
| Metal 1–Metal 2 via $(3 \mu \times 3 \mu \text{ contact})$ | < 0.1      |                        | Ω              |
| Metal 1 contact to POLY I (3 $\mu \times 3 \mu$ contact)   | <10        |                        | Ω              |
| Metal 1 contact to $n^+$ or $n^+$ diffusion                |            |                        |                |
| $(3 \ \mu \times 3 \ \mu \text{ contact})$                 | <5         |                        | Ω              |
| Breakdown voltages, leakage currents, migration            | currents a | nd operating           | conditions     |
| Punchthrough voltages (Gate oxide, POLY I to POLY II)      | >10        |                        | v              |
| Diffusion reverse breakdown voltage                        | >10        |                        | v              |
| p-well to substrate reverse breakdown voltage              | >20        |                        | v              |
| Metal 1 in field threshold voltage                         | >10        |                        | v              |
| Metal 2 in field threshold voltage                         | >10        |                        | v              |
| Poly-field threshold voltage                               | >10        |                        | v              |
| Maximum operating voltage                                  | 7.0        |                        | v              |
| n <sup>+</sup> diffusion to p-well leakage current         | 0.25       |                        | $fA/\mu^2$     |
| n <sup>+</sup> diffusion to substrate leakage current      | 0.25       |                        | $fA/\mu^2$     |
| n-well leakage current                                     | 0.25       |                        | $fA/\mu^2$     |
| Maximum metal current density                              | 0.8        |                        | $mA/\mu$ width |
| Maximum device operating temperature                       | 200        |                        | °C             |

<sup>a</sup>Parameters based upon a  $3\mu$  ( $\lambda = 1.5\mu$ ) CMOS process.

<sup>b</sup>The tolerance is in terms of the absolute value of the parameter relative to processing variations from run to run. Matching characteristics on a die are much better. For example, chip-level matching of  $V_{T0}$  is in the 1 mV to 20 mV range, and K' matching is in the 0.5% to 5% range.<sup>18-22</sup>

<sup>c</sup>Impurity concentration varies with depth.

<sup>d</sup>Junction capacitances at zero bias.

.

i

#### TABLE 2B.5SPICE MOSFET model parameters of a typicalp-well CMOS process (MOSIS<sup>a</sup>)

| Parameter<br>(Level 2 model) | n-channel  | p-channel | Units                     |     |
|------------------------------|------------|-----------|---------------------------|-----|
| VTO                          | 0.827      | -0.895    | V                         |     |
| KP                           | 32.87      | 15.26     | $\mu$ A/V <sup>2</sup>    |     |
| GAMMA                        | 1.36       | 0.879     | $V^{1/2}$                 |     |
| PHI                          | 0.6        | 0.6       | V                         |     |
| LAMBDA                       | 1.605E - 2 | 4.709E-2  | $V^{-1}$                  |     |
| CGSO                         | 5.2E-4     | 4.0E-4    | $fF/\mu$ width            |     |
| CGDO                         | 5.2E-4     | 4.0E - 4  | $fF/\mu$ width            |     |
| RSH                          | 25         | 95        | $\Omega/\Box$             |     |
| CJ                           | 3.2E-4     | 2.0E-4    | ₽ <b>⁄</b> ീ͡F/μ²         |     |
| MJ                           | 0.5        | 0.5       |                           | Ve  |
| CJSW                         | 9.0E-4     | 4.5E-4    | $\rho$ $fF/\mu$ perimeter | 6-0 |
| MJSW                         | 0.33       | 0.33      |                           | 6-h |
| TOX                          | 500        | 500       | Å                         | °r, |
| NSUB                         | 1.0E16     | 1.12E14   | $1/cm^3$                  |     |
| NSS                          | 0          | 0         | $1/cm^2$                  |     |
| NFS                          | 1.235E12   | 8.79E11   | $1/cm^2$                  |     |
| TPG                          | 1          | -1        |                           |     |
| XJ                           | 0.4        | 0.4       | $\mu$                     |     |
| LD                           | 0.28       | 0.28      | μ                         |     |
| UO                           | 200        | 100       | $cm^2/(V \cdot s)$        |     |
| UCRIT                        | 9.99E5     | 1.64E4    | V/cm                      |     |
| UEXP                         | 1.001E-3   | 0.1534    |                           |     |
| VMAX                         | 1.0E5      | 1.0E5     | m/s                       |     |
| NEFF                         | 1.001E-2   | 1.001E-2  |                           |     |
| DELTA                        | 1.2405     | 1.938     |                           |     |

 $^a$  The SPICE parameters were obtained by assuming them to be empirical parameters and then fitting measured device characteristics to the mathematical equations which comprise the model by using a numerical optimization algorithm. This approach gives good fit to the model but causes a deviation from the typical parameters of Table 2A.4 and results in parameter relationships which may not be self-consistent with some of the fundamental relationships developed in Chapters 3 and 4.

### **Basic Devices**



- ....

- Resistor
- Capacitor
- MOSFET
- Diode
- BJT

- Resistor
- Capacitor
- MOSFET
- Diode
- BJT
- Resistors and Capacitors were discussed previously in the context of interconnects
- Were generally considered parasitics in earlier discussions
- Will now be considered as desired components
- Models obviously will be very similar or identical

#### Resistor

- Capacitor
- MOSFET
- Diode
- BJT

### Resistors

- Generally thin-film devices
- Almost any thin-film layer can be used as a resistor
  - Diffused resistors
  - Poly Resistors
  - Metal Resistors
  - "Thin-film" adders (SiCr or NiCr)
- Subject to process variations, gradient effects and local random variations
- Often temperature and voltage dependent
  - Ambient temperature
  - Local Heating
- Nonlinearities often a cause of distortion when used in circuits
- Trimming possible resistors
  - Laser,links,switches

#### **Resistor Model**



Model:  $\mathbf{R} = \frac{\mathbf{V}}{\mathbf{I}}$ 

# Resistivity

 Volumetric measure of conduction capability of a material



#### **Sheet Resistance**



for homogeneous materials,  $R_{\square}$  is independent of W, L, R

#### Relationship between $\rho$ and $R_{\Box}$



Number of squares,  $N_{s}$ , often used instead of L / W in determining resistance of film resistors

 $R=R_{\Box}N_{S}$ 







R = ?



R = ? $N_{S}=8.4$  $R = R_{\Box}$  (8.4)

### **Corners in Film Resistors**



Rule of Thumb: .55 squares for each corner

#### Determine R if $R_{\Box} = 100 \Omega / \Box$





$$N_{\rm S}$$
=17.1  
R = (17.1) R<sub>□</sub>  
R = 1710 Ω

#### Resistivity of Materials used in Semiconductor Processing

- Cu: 1.7*E*-6 Ωcm
- AI: 2.7*E*-4 Ωcm
- Gold: 2.4*E*-6 Ωcm
- Platinum:  $3.0E-6 \Omega cm$
- n-Si: .25 to 5 Ωcm
- intrinsic Si:  $2.5E5 \Omega$ cm
- SiO<sub>2</sub>:  $E14 \Omega cm$

# **Temperature Coefficients**

Used for indicating temperature sensitivity of resistors & capacitors **For a resistor:** 

$$TCR = \left(\frac{1}{R}\frac{dR}{dT}\right)_{op. temp}^{10^6} \qquad ppm/^{\circ}C$$

This diff eqn can easily be solved if TCR is a constant

$$R(T_{2}) = R(T_{1})e^{\frac{T_{2}-T_{1}}{10^{6}}TCR}$$

$$R(T_2) \approx R(T_1) \left[ 1 + (T_2 - T_1) \frac{TCR}{10^6} \right]$$

**Identical Expressions for Capacitors** 

# Voltage Coefficients

Used for indicating voltage sensitivity of resistors & capacitors For a resistor:

$$VCR = \left(\frac{1}{R}\frac{dR}{dV}\right)_{ref voltage}^{10^{6}} ppm/V$$

This diff eqn can easily be solved if VCR is a constant

$$R(V_2) = R(V_1) e^{\frac{V_2 - V_1}{10^6} VCR}$$

$$\mathbf{R}(\mathbf{V_2}) \approx \mathbf{R}(\mathbf{V_1}) \left[ 1 + (\mathbf{V_2} - \mathbf{V_1}) \frac{\mathbf{VCR}}{\mathbf{10^6}} \right]$$

**Identical Expressions for Capacitors** 

Temperature and Voltage Coefficients

- Temperature and voltage coefficients often quite large for diffused resistors
- Temperature and voltage coefficients often quite small for poly and metal resistors

# Capacitance and Resistance in Interconnects

 See MOSIS WEB site for process parameters that characterize parasitic resistances and capacitances

www.mosis.org

• Resistor

- Capacitor
  - MOSFET
  - Diode
  - BJT

#### Capacitance



### Capacitance

#### Parallel Plate

If 
$$C_d = \frac{Cap}{unit area}$$
  $C = C_d A$  where  $C_d = \frac{\epsilon}{d}$ 

#### Capacitance

#### Junction Capacitor

