EE 434 Lecture 13

Basic Semiconductor Processes
Devices in Semiconductor Processes

Quiz 9 The top view of a device fabricated in a bulk CMOS process is shown in the figure below
a) Identify the device
b) Sketch a cross-section along the AA' section line

$$
\begin{array}{ll}
\square & \text { Metal } 1 \\
\square & \text { Poly } 1 \\
\square & \text { Active } \\
\square & \text { p-select } \\
\square & \text { n-well } \\
= & \text { Contact }
\end{array}
$$

And the number is

$$
\begin{array}{lllllllll}
1 & & 8 & & 7 & & 5 & & 3
\end{array}
$$

Quiz 9 Solution
a) p-channel MOS Transistor

Review from Last Time

- Process Flow is a "recipe" for the process
- Shows what can and can not be made
- Gives insight into performance capabilities and limitations
- Designer has control only of top view
- Some masks may be automatically generated
- Geometric Description File (GDF) contains all information about a layout and serves as interface with foundry

$C \longmapsto$

D
Guard Rings and Bulk Attachment

Basic Devices and Device Models

- Resistor
- Diode
- Capacitor
- MOSFET
- BJT

Basic Devices and Device Models

\Rightarrow Resistor

- Diode
- Capacitor
- MOSFET
- BJT

Device Modeling

Goal: Obtain a mathematical relationship between the port variables of a device.

2-terminal device
3-terminal device
4-terminal device

Device Modeling

Goal: Obtain a mathematical relationship between the port variables of a device.

Without loss of generality, one terminal can be selected as a reference
(this can be done in one of 4 ways!)

Thus modeling problem is that of determining mathematical relationship Between the six variables $I_{1}, I_{2}, I_{3}, V_{1}, V_{2}$, and V_{3}

Device Modeling

Goal: Obtain a mathematical relationship between the port variables of a device.

Any 3 of the 6 variables $\left\{I_{1}, I_{2}, I_{3}, V_{1}, V_{2}, V_{3}\right\}$ can be selected as independent variables and the remaining 3 variables can be selected as dependent variables
There are $\binom{6}{3}=\frac{6!}{3!3!}=20 \quad$ ways this can be done
Thus there are $4 \times 20=80$ different mathematical representations of a 4-terminal device and all predict identical performance!

Device Modeling

Goal: Obtain a mathematical relationship between the port variables of a device.

By convention, will pick $\left\{V_{1}, V_{2}, V_{3}\right\}$ as the independent variables and $\left\{I_{1}, I_{2}, I_{3}\right\}$ as the dependent variables

Device Modeling

Goal: Obtain a mathematical relationship between the port variables of a device.

Modeling Goal: Obtain f_{1}, f_{2}, and f_{3} that sufficiently accurately characterize the device

$$
\left.\begin{array}{l}
\mathbf{I}_{1}=\mathbf{f}_{1}\left(\mathbf{V}_{1}, \mathbf{V}_{2}, \mathbf{V}_{3}\right) \\
\mathbf{I}_{1}=\mathbf{f}_{1}\left(\mathbf{V}_{1}, \mathbf{V}_{2}, \mathbf{V}_{3}\right) \\
\mathbf{I}_{1}=\mathbf{f}_{1}\left(\mathbf{V}_{1}, \mathbf{V}_{2}, \mathbf{V}_{3}\right)
\end{array}\right\}
$$

Device Modeling

Goal: Obtain a mathematical relationship between the port variables of a device.

$$
\left.\begin{array}{l}
\mathbf{I}_{1}=\mathbf{f}_{1}\left(\mathbf{V}_{1}, \mathbf{V}_{2}, \mathbf{V}_{3}\right) \\
\mathbf{I}_{2}=\mathbf{f}_{2}\left(\mathbf{V}_{1}, \mathbf{V}_{2}, \mathbf{V}_{3}\right) \\
\mathbf{I}_{3}=\mathbf{f}_{3}\left(\mathbf{V}_{1}, \mathbf{V}_{2}, \mathbf{V}_{3}\right)
\end{array}\right\}
$$

Resistors

- Generally thin-film devices
- Almost any thin-film layer can be used as a resistor
- Diffused resistors
- Poly Resistors
- Metal Resistors
- "Thin-film" adders (SiCr or NiCr)
- Subject to process variations, gradient effects and local random variations
- Often temperature and voltage dependent
- Ambient temperature
- Local Heating
- Nonlinearities often a cause of distortion when used in circuits
- Trimming possible resistors
- Laser,links,switches

Resistor Model

Model:

$$
R=\frac{V}{1}
$$

Resistivity

- Volumetric measure of conduction capability of a material

$$
\rho=\frac{\mathrm{AR}}{\mathrm{~L}}
$$

for homogeneous material,
units : ohm cm
$\rho \perp \mathrm{A}, \mathrm{R}, \mathrm{L}$

Sheet Resistance

$\mathrm{R}_{\square}=\frac{\mathrm{RW}}{\mathrm{L}} \quad$ (for $\mathrm{d} \ll \mathrm{w}, \mathrm{d} \ll \mathrm{L}$) units : ohms /
for homogeneous materials, R is independent of $\mathrm{W}, \mathrm{L}, \mathrm{R}$

Relationship between ρ and R

$$
\left.\begin{array}{r}
\mathrm{R}_{\square}=\frac{\mathrm{RW}}{\mathrm{~L}} \\
\rho=\frac{\mathrm{AR}}{\mathrm{~L}} \\
\rho=\frac{\mathbf{A}}{\mathbf{W}} \mathbf{R}_{\square}=\frac{\mathbf{W} \mathbf{d}}{\mathbf{W}} \mathbf{R}_{\square}=\mathbf{d} \times \mathbf{R}_{\square}
\end{array}\right\} \begin{aligned}
& \rho=\frac{\mathrm{A}}{\mathrm{~W}} \mathrm{R}_{\square} \\
& \mathrm{A}=\mathrm{W} \times \mathrm{d}
\end{aligned}
$$

Number of squares, $N_{\text {s }}$, often used instead of L/W in determining resistance of film resistors

$$
\mathrm{R}=\mathrm{R}_{\square} \mathrm{N}_{\mathrm{S}}
$$

Example 1

Example 1

Example 1

$\mathrm{R}=$?

Example 1

$$
\mathrm{R}=\text { ? }
$$

$\mathrm{N}_{\mathrm{S}}=8.4$
$R=R \quad$ (8.4)

Corners in Film Resistors

Rule of Thumb: . 55 squares for each corner

Example 2

Determine R if $\mathrm{R}=100 \Omega /$

Example 2

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{S}}=17.1 \\
& \mathrm{R}=(17.1) \mathrm{R} \\
& \mathrm{R}=1710 \Omega
\end{aligned}
$$

Resistivity of Materials used in Semiconductor Processing

\author{

- Cu: $\quad 1.7 E-6 \Omega \mathrm{~cm}$
 - Al: 2.7E-4 $\Omega \mathrm{cm}$
 - Gold: 2.4E-6 $\Omega \mathrm{cm}$
 - Platinum: 3.0E-6 $\Omega \mathrm{cm}$
 - n-Si: 25 to $5 \Omega \mathrm{~cm}$
}
- intrinsic Si: $2.5 E 5 \Omega \mathrm{~cm}$
- SiO_{2} : E14 $\Omega \mathrm{cm}$

Temperature Coefficients

Used for indicating temperature sensitivity of resistors \& capacitors For a resistor:

$$
\mathrm{TCR}=\left.\left(\frac{1}{\mathrm{R}} \frac{\mathrm{dR}}{\mathrm{dT}}\right)\right|_{\text {op. temp }} ^{10^{6}} \quad \mathrm{ppm} /{ }^{\circ} \mathrm{C}
$$

This diff eqn can easily be solved if TCR is a constant

$$
\mathrm{R}\left(\mathrm{~T}_{2}\right)=\mathrm{R}\left(\mathrm{~T}_{1}\right) e^{\frac{\mathrm{T}_{2}-\mathrm{T}_{1}}{10^{6}} \mathrm{TCR}}
$$

$$
\mathrm{R}\left(\mathrm{~T}_{2}\right) \approx \mathrm{R}\left(\mathrm{~T}_{1}\right)\left[1+\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right) \frac{\mathrm{TCR}}{10^{6}}\right]
$$

Identical Expressions for Capacitors

Voltage Coefficients

Used for indicating voltage sensitivity of resistors \& capacitors
For a resistor:

$$
\mathrm{VCR}=\left.\left(\frac{1}{R} \frac{\mathrm{dR}}{\mathrm{dV}}\right)\right|_{\text {ref voltage }} ^{10^{6}} \quad \mathrm{ppm} / \mathrm{V}
$$

This diff eqn can easily be solved if VCR is a constant

$$
\mathbf{R}\left(\mathbf{V}_{2}\right)=\mathbf{R}\left(\mathbf{V}_{1}\right) e^{\frac{\mathbf{V}_{2}-\mathbf{V}_{1}}{10^{6}} \mathrm{vCR}}
$$

$$
\mathbf{R}\left(\mathbf{V}_{2}\right) \approx \mathbf{R}\left(\mathbf{V}_{1}\right)\left[1+\left(\mathbf{V}_{2}-\mathbf{V}_{1}\right) \frac{\mathbf{V C R}}{10^{6}}\right]
$$

Identical Expressions for Capacitors

Temperature and Voltage Coefficients

- Temperature and voltage coefficients often quite large for diffused resistors
- Temperature and voltage coefficients often quite small for poly and metal resistors

End of Lecture 13

