#### EE 434 Lecture 13

Basic Semiconductor Processes Devices in Semiconductor Processes

#### Quiz 9 The top view of a device fabricated in a bulk CMOS process is shown in the figure below

- a) Identify the device
- b) Sketch a cross-section along the AA' section line



# And the number is .... 1 <sup>8</sup> 7 5 3 6 9 4 2





#### **Review from Last Time**

- Process Flow is a "recipe" for the process
  - Shows what can and can not be made
  - Gives insight into performance capabilities and limitations
  - Designer has control only of top view
  - Some masks may be automatically generated
  - Geometric Description File (GDF) contains all information about a layout and serves as interface with foundry



#### **Basic Devices and Device Models**

- Resistor
- Diode
- Capacitor
- MOSFET
- BJT

#### **Basic Devices and Device Models**

#### Resistor

- Diode
- Capacitor
- MOSFET
- BJT

Goal: Obtain a mathematical relationship between the port variables of a device.



2-terminal device

3-terminal device

4-terminal device

# Goal: Obtain a mathematical relationship between the port variables of a device.

Without loss of generality, one terminal can be selected as a reference (this can be done in one of 4 ways!)



Thus modeling problem is that of determining mathematical relationship Between the six variables  $I_1$ ,  $I_2$ ,  $I_3$ ,  $V_1$ ,  $V_2$ , and  $V_3$ 

Goal: Obtain a mathematical relationship between the port variables of a device.



Any 3 of the 6 variables  $\{I_1, I_2, I_3, V_1, V_2, V_3\}$  can be selected as independent variables and the remaining 3 variables can be selected as dependent variables

There are 
$$\binom{6}{3} = \frac{6!}{3!3!} = 20$$
 we

ways this can be done

Thus there are 4x20=80 different mathematical representations of a 4-terminal device and all predict identical performance !

Goal: Obtain a mathematical relationship between the port variables of a device.



By convention, will pick {  $V_1$ ,  $V_2$ ,  $V_3$ } as the independent variables and { $I_1$ ,  $I_2$ ,  $I_3$ } as the dependent variables

Goal: Obtain a mathematical relationship between the port variables of a device.



Modeling Goal: Obtain  $f_1$ ,  $f_2$ , and  $f_3$  that sufficiently accurately characterize the device

$$\left. \begin{array}{l} I_{1} = f_{1} \Big( V_{1}, V_{2}, V_{3} \Big) \\ I_{1} = f_{1} \Big( V_{1}, V_{2}, V_{3} \Big) \\ I_{1} = f_{1} \Big( V_{1}, V_{2}, V_{3} \Big) \end{array} \right\}$$

#### Device Modeling Goal: Obtain a mathematical relationship between the

Goal: Obtain a mathematical relationship between the port variables of a device.



$$\begin{aligned} \mathbf{I}_1 &= \mathbf{f}_1 \big( \mathbf{V}_1, \mathbf{V}_2 \big) \\ \mathbf{I}_2 &= \mathbf{f}_2 \big( \mathbf{V}_1, \mathbf{V}_2 \big) \end{aligned}$$

$$\mathbf{I}_1 = \mathbf{f}_1(\mathbf{V}_1)$$

#### Resistors

- Generally thin-film devices
- Almost any thin-film layer can be used as a resistor
  - Diffused resistors
  - Poly Resistors
  - Metal Resistors
  - "Thin-film" adders (SiCr or NiCr)
- Subject to process variations, gradient effects and local random variations
- Often temperature and voltage dependent
  - Ambient temperature
  - Local Heating
- Nonlinearities often a cause of distortion when used in circuits
- Trimming possible resistors
  - Laser,links,switches

#### **Resistor Model**



Model:  $\mathbf{R} = \frac{\mathbf{V}}{\mathbf{I}}$ 

#### Resistivity

 Volumetric measure of conduction capability of a material



#### **Sheet Resistance**



for homogeneous materials, R is independent of W, L, R

#### Relationship between $\rho$ and R



Number of squares,  $N_{e}$ , often used instead of L / W in determining resistance of film resistors

 $R=R_{\Box}N_{S}$ 







R = ?



R = ? $N_{S}=8.4$ R = R (8.4)

#### **Corners in Film Resistors**



Rule of Thumb: .55 squares for each corner

#### Determine R if R = $100 \Omega$ /





$$N_{s}$$
=17.1  
R = (17.1) R  
R = 1710 Ω

#### Resistivity of Materials used in Semiconductor Processing

- Cu: 1.7*E*-6 Ωcm
- AI: 2.7*E*-4 Ωcm
- Gold: 2.4*E*-6 Ωcm
- Platinum:  $3.0E-6 \Omega cm$
- n-Si: .25 to 5 Ωcm
- intrinsic Si:  $2.5E5 \Omega$ cm
- SiO<sub>2</sub>:  $E14 \Omega cm$

### **Temperature Coefficients**

Used for indicating temperature sensitivity of resistors & capacitors **For a resistor:** 

$$TCR = \left(\frac{1}{R}\frac{dR}{dT}\right)\Big|_{op. temp}^{10^6} \qquad ppm/^{\circ}C$$

This diff eqn can easily be solved if TCR is a constant

$$R(T_{2}) = R(T_{1})e^{\frac{T_{2}-T_{1}}{10^{6}}TCR}$$

$$\mathbf{R}(\mathbf{T}_2) \approx \mathbf{R}(\mathbf{T}_1) \left[ 1 + (\mathbf{T}_2 - \mathbf{T}_1) \frac{\mathbf{ICR}}{10^6} \right]$$

**Identical Expressions for Capacitors** 

### Voltage Coefficients

Used for indicating voltage sensitivity of resistors & capacitors For a resistor:

$$VCR = \left(\frac{1}{R}\frac{dR}{dV}\right)\Big|_{ref voltage}^{10^6} ppm/V$$

This diff eqn can easily be solved if VCR is a constant

$$R(V_2) = R(V_1) e^{\frac{V_2 - V_1}{10^6} VCR}$$

$$\mathbf{R}(\mathbf{V_2}) \approx \mathbf{R}(\mathbf{V_1}) \left[ 1 + (\mathbf{V_2} - \mathbf{V_1}) \frac{\mathbf{VCR}}{\mathbf{10^6}} \right]$$

**Identical Expressions for Capacitors** 

**Temperature and Voltage Coefficients** 

- Temperature and voltage coefficients often quite large for diffused resistors
- Temperature and voltage coefficients often quite small for poly and metal resistors

## End of Lecture 13