EE 434 Lecture 14

Devices in Semiconductor Processes

Quiz 10

We saw that there were 80 different ways to represent equivalent models for a 4-terminal device with these difference representations being determined by which terminal of the device is selected as a reference and by which port variables are assumed to be independent. What is the corresponding number of different ways to represent equivalent models for a 3-terminal device?

And the number is
 1
 8 7 5 3
 6
 9
 4
 2

Quiz 10

We saw that there were 80 different ways to represent equivalent models for a 4terminal device with these difference representations being determined by which terminal of the device is selected as a reference and by which port variables are assumed to be independent. What is the corresponding number of different ways to represent equivalent models for a 3-terminal device?

Solution:

Port Variables $=\left\{\left\{_{1}, \mathbf{I}_{2} \mathbf{V}_{1}, \mathbf{V}_{2}\right\}\right.$

There are $n_{1}=3$ ways a reference terminal can be selected
There are a total of 4 port electrical variables and any two of these can be selected as independent variables

$$
\left.n=3\binom{4}{2}=3 \frac{4!}{(4-2)!2!}=18 \quad \begin{array}{l}
\mathbf{l}_{1}=\mathbf{f}_{\mathbf{1}}\left(\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right) \\
\mathbf{I}_{\mathbf{2}}=\mathbf{f}_{\mathbf{2}}\left(\mathbf{v}_{1}, \mathbf{V}_{2}\right)
\end{array}\right\}
$$

Review from Last Time

Device Modeling

Goal: Obtain a mathematical relationship between the port variables of a device.

$$
\left.\left.\begin{array}{l}
\mathbf{I}_{1}=\mathbf{f}_{1}\left(\mathbf{V}_{1}, \mathbf{V}_{2}, \mathbf{V}_{3}\right) \\
\mathbf{I}_{2}=\mathbf{f}_{2}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right) \\
\mathbf{I}_{3}=\mathbf{f}_{3}\left(\mathbf{V}_{1}, \mathbf{v}_{2}, \mathbf{V}_{3}\right)
\end{array}\right\}, \begin{array}{l}
\mathbf{I}_{1}=\mathbf{f}_{1}\left(\mathbf{V}_{1}, \mathbf{V}_{2}\right) \\
\mathbf{I}_{2}=\mathbf{f}_{2}\left(\mathbf{V}_{1}, \mathbf{V}_{2}\right) \\
\mathbf{I}_{1}=\mathbf{f}_{1}\left(\mathbf{V}_{1}\right)
\end{array}\right\}
$$

Review from Last Time

Resistors are film devices since vertical dimensions small compared to lateral dimensions

Almost any layer can be (and is) used to form a resistor
Some have more attractive linearity or area requirements Poly often material of choice for resistors

Voltage and Temperature performance characterized by VCR and TCR

$$
\begin{aligned}
& \mathbf{V C R}=\left.\left(\frac{\mathbf{1}}{\mathbf{R}} \frac{\mathbf{d R}}{\mathbf{d V}}\right)\right|_{\text {ref voltage }} ^{10^{6}} \\
& \mathbf{p p m} / \mathbf{V}
\end{aligned} \mathrm{R}\left(\mathrm{~T}_{2}\right) \approx \mathrm{R}\left(\mathrm{~T}_{1}\right)\left[1+\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right) \frac{\mathrm{TCR}}{10^{6}}\right] .
$$

Conductivity of copper more attractive than that of aluminum

Basic Devices and Device Models

- Resistor

Diode

- Capacitor
- MOSFET
- BJT

Diode Operation and Model

Goal: Obtain a mathematical relationship between the port variables of the diode

$$
\left.\mathbf{I}_{1}=\mathbf{f}_{1}\left(\mathbf{V}_{1}\right)\right\}
$$

$$
\left.\mathbf{I}_{\mathrm{D}}=\mathrm{f}_{1}\left(\mathbf{V}_{\mathrm{D}}\right)\right\}
$$

Diodes (pn junctions)

Depletion region created that is ionized but void of carriers

pn Junctions

If doping levels identical, depletion region extends equally into n-type and p-type regions

pn Junctions

Extends farther into p -type region if p -doping lower than n -doping

pn Junctions

Extends farther into n -type region if n -doping lower than p-doping

pn Junctions

pn Junctions

Basic Devices and Device Models

- Resistor
- Diode

Capacitor

- MOSFET
- BJT

Capacitors

- Types
- Parallel Plate
- Fringe
- Junction

Parallel Plate Capacitors

A = area of intersection of $\mathrm{A}_{1} \& \mathrm{~A}_{2}$
One (top) plate intentionally sized smaller to determine \mathbf{C}

$$
\mathrm{C}=\frac{\in \mathrm{A}}{\mathrm{~d}} \quad \varepsilon: \text { Dielectric constant }
$$

Parallel Plate Capacitors

$$
\text { If } C_{d}=\frac{\text { Cap }}{\text { unit area }}
$$

$$
\begin{aligned}
& C=\frac{\varepsilon A}{d} \\
& C=C_{d} A
\end{aligned}
$$

where

$$
C_{d}=\frac{\varepsilon}{d}
$$

Fringe Capacitors

$$
C=\frac{\varepsilon A}{d}
$$

A is the area where the two plates are parallel Only a single layer is needed to make fringe capacitors

Fringe Capacitors

Capacitance

Junction Capacitor

End of Lecture 14

