EE 434 Lecture 15

Devices in Semiconductor Processes

Quiz 10

The resistors in this strain-gauge bridge circuit have a temperature coefficient that is $+200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and measured unstrained resistance value at $\mathrm{T}=300^{\circ} \mathrm{K}$ of 100Ω. Assume that the temperature of R_{4} was $30^{\circ} \mathrm{C}$ higher than that of the remaining resistors which are all operating at $300^{\circ} \mathrm{K}$. If the signal information is carried in the change in R_{2} which is 0.01Ω. What percent error in $\mathrm{V}_{\text {OUT }}$ is introduced by the temperature variation of R_{4} ?

And the number is
 1 87
 5
 3
 6
 94
 2

Quiz 10 Solution:

The resistors in this strain-gauge bridge circuit have a temperature coefficient that is $+200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and measured unstrained resistance value at $\mathrm{T}=300^{\circ} \mathrm{K}$ of 100Ω. Assume that the temperature of R_{4} was $30^{\circ} \mathrm{C}$ higher than that of the remaining resistors which are all operating at $300^{\circ} \mathrm{K}$. If the signal information is carried in the change in R_{2} which is 0.01Ω. What percent error in $\mathrm{V}_{\text {OUT }}$ is introduced by the temperature variation of R_{4} ?

$$
\mathrm{R}_{3}
$$

$$
\begin{aligned}
& V_{\text {OUTD }}=V_{R R}\left(\frac{R_{2 A}}{R_{1 N}+R_{2 A}}-\frac{R_{4 N}}{R_{4 N}+R_{3 N}}\right) \\
& \mathbf{V}_{\text {OUTD }}=V_{R R}\left(\frac{\mathbf{1 0 0 . 0 1}}{\mathbf{2 0 0 . 0 1}}-\frac{100}{200}\right)=V_{R R}(\mathbf{2 . 4 9 E}-\mathbf{5}) \\
& \mathbf{R}_{4}\left(T_{2}\right) \approx R_{4}\left(\mathbf{T}_{1}\right)\left[1+\left(\mathbf{T}_{2}-T_{1}\right) \frac{T C R}{10^{6}}\right] \\
& \mathbf{R}_{4}\left(T_{2}\right) \approx 100\left[1+(\mathbf{3 0}) \frac{\mathbf{2 0 0}}{\mathbf{1 0}^{6}}\right]=100.6 \Omega
\end{aligned}
$$

Quiz 10 Solution:

Quiz 10 Solution:

Review from Last Time
 Basic Devices and Device Models

- Resistor

Diode
Capacitor

- MOSFET
- BJT

Review from Last Time

pn Junctions

Review from Last Time

Capacitors

- Types
- Parallel Plate
- Fringe
- Junction

Review from Last Time

Parallel Plate Capacitors

A = area of intersection of $\mathrm{A}_{1} \& \mathrm{~A}_{2}$
One (top) plate intentionally sized smaller to determine \mathbf{C}

$$
\mathbf{C}=\mathbf{C}_{\mathrm{d}} \mathbf{A}
$$

Review from Last Time
Fringe Capacitors

Review from Last Time

capacitance

Junction Capacitor

Basic Devices and Device Models

- Resistor
- Diode
- Capacitor
\Rightarrow MOSFET
- BJT

Operation and Modeling of MOSFET

Goal: Obtain a mathematical relationship between the port variables of a device.

$$
\left.\begin{array}{l}
\mathrm{I}_{\mathrm{D}}=\mathbf{f}_{1}\left(\mathbf{V}_{\mathrm{GS}}, \mathbf{V}_{\mathrm{DS}}, \mathbf{V}_{\mathrm{BS}}\right) \\
\mathrm{I}_{\mathrm{G}}=\mathbf{f}_{2}\left(\mathbf{v}_{\mathrm{GS}}, \mathbf{V}_{\mathrm{DS}}, \mathbf{V}_{\mathrm{BS}}\right) \\
\mathrm{I}_{\mathrm{B}}=\mathbf{f}_{3}\left(\mathbf{V}_{\mathrm{GS}}, \mathbf{V}_{\mathrm{DS}}, \mathbf{V}_{\mathrm{BS}}\right)
\end{array}\right\}
$$

$$
\left.\begin{array}{l}
\mathbf{I}_{1}=\mathbf{f}_{1}\left(\mathbf{V}_{1}, \mathbf{V}_{2}, \mathbf{V}_{3}\right) \\
\mathbf{I}_{2}=\mathbf{f}_{2}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{V}_{3}\right) \\
\mathbf{I}_{3}=\mathbf{f}_{3}\left(\mathbf{V}_{1}, \mathbf{v}_{2}, \mathbf{V}_{3}\right)
\end{array}\right\}
$$

Modeling of the MOSFET

Strategy

Develop multiple models that are useful for specific classes of applications

Use as simple of a model as we can justify

Often must consider a modestly more complicated model to justify a simpler model

Modeling of the MOSFET

Goal: Obtain a mathematical relationship between the port variables of a device.

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{D}}=\mathrm{f}_{1}\left(\mathbf{V}_{\mathrm{GS}}, \mathbf{V}_{\mathrm{DS}}, \mathbf{V}_{\mathrm{BS}}\right) \\
& \mathrm{I}_{\mathrm{G}}=\mathrm{f}_{2}\left(\mathbf{V}_{\mathrm{GS}}, \mathbf{V}_{\mathrm{DS}}, \mathbf{V}_{\mathrm{BS}}\right) \\
& \mathrm{I}_{\mathrm{B}}=\mathrm{f}_{3}\left(\mathbf{V}_{\mathrm{GS}}, \mathbf{V}_{\mathrm{DS}}, \mathbf{V}_{\mathrm{BS}}\right)
\end{aligned}
$$

Modeling of the MOSFET

Goal: Obtain a mathematical relationship between the port variables of a device.

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{D}}=\mathrm{f}_{1}\left(\mathbf{V}_{\mathrm{GS}}, \mathbf{V}_{\mathrm{DS}}, \mathbf{V}_{\mathrm{BS}}\right) \\
& \mathrm{I}_{\mathrm{G}}=\mathrm{f}_{2}\left(\mathbf{V}_{\mathrm{GS}}, \mathbf{V}_{\mathrm{DS}}, \mathbf{V}_{\mathrm{BS}}\right) \\
& \mathrm{I}_{\mathrm{B}}=\mathrm{f}_{3}\left(\mathbf{V}_{\mathrm{GS}}, \mathbf{V}_{\mathrm{DS}}, \mathbf{V}_{\mathrm{BS}}\right)
\end{aligned}
$$

Simple dc Model

n-Channel MOSFET

n-Channel MOSFET

n-Channel MOSFET

n-Channel MOSFET Operation and Model

Apply small V_{GS}
(V_{DS} and V_{BS} assumed to be small)
Depletion region at drain and source block current Termed "cutoff" region of operation

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{D}}=0 \\
& \mathrm{I}_{\mathrm{G}}=0 \\
& \mathrm{I}_{\mathrm{B}}=0
\end{aligned}
$$

n-Channel MOSFET Operation and Model

Apply small V_{GS} but a little larger than before
(V_{DS} and V_{BS} assumed to be small)
Depletion region electrically induced in channel Termed "cutoff" region of operation

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{D}}=0 \\
& \mathrm{I}_{\mathrm{G}}=0 \\
& \mathrm{I}_{\mathrm{B}}=0
\end{aligned}
$$

n-Channel MOSFET Operation and Model

Increase V_{GS}
(V_{DS} and V_{BS} assumed to be small)

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{D}}=0 \\
& \mathrm{I}_{\mathrm{G}}=0 \\
& \mathrm{I}_{\mathrm{B}}=0
\end{aligned}
$$

n-Channel MOSFET Operation and Model

Increase V_{GS} more
Inversion layer forms in channel
$\mathrm{I}_{\mathrm{D}} \mathrm{R}_{\mathrm{CH}}=\mathrm{V}_{\mathrm{DS}}$
Inversion layer will support current flow from D to S
Channel behaves as thin-film resistor
$\mathrm{I}_{\mathrm{G}}=0$
$I_{B}=0$

n-Channel MOSFET Operation and Model

Increase V_{GS} more

Inversion layer in channel thickens
R_{CH} will decrease
Termed "ohmic" or "triode" region of operation

$$
\begin{aligned}
& I_{D} R_{C H}=V_{D S} \\
& I_{G}=0 \\
& I_{B}=0
\end{aligned}
$$

Triode Region of Operation

For $V_{D S}$ small
$R_{C H}=\frac{\mathrm{L}}{\mathrm{W}}\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}\right)^{-1} \frac{1}{\mu \mathrm{C}_{\mathrm{ox}}} \quad \begin{aligned} & \mathrm{I}_{\mathrm{D}}=\boldsymbol{\mu} \mathbf{C}_{\mathrm{ox}} \frac{\mathbf{W}}{\mathbf{L}}\left(\mathbf{V}_{\mathrm{GS}}-\mathbf{V}_{\mathrm{T}}\right) \mathbf{V}_{\mathrm{DS}}=\mathrm{I}_{\mathrm{B}}=\mathbf{0}\end{aligned}$

n-Channel MOSFET Operation and Model

Increase $V_{D S}$
Inversion layer thins near drain

$$
I_{D}=?
$$

I_{D} no longer linearly dependent upon $V_{D S}$ Still termed "ohmic" or "triode" region of operation
$\mathrm{I}_{\mathrm{G}}=0$
$\mathrm{I}_{\mathrm{B}}=0$

Triode Region of Operation

For V_{DS} larger
$R_{c H}=\frac{L}{W}\left(V_{\text {os }}-V_{T}\right)^{-1} \frac{1}{\mu C_{o x}}$

$$
\begin{aligned}
& I_{D}=\mu C_{o x} \frac{W}{L}\left(V_{G S}-V_{T}-\frac{V_{D S}}{2}\right) V_{D S} \\
& I_{G}=I_{B}=0
\end{aligned}
$$

n-Channel MOSFET Operation and Model

Increase V_{DS} even more
Inversion layer disappears near drain Termed "saturation"region of operation Saturation first occurs when $\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}$

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{D}}=? \\
& \mathrm{I}_{\mathrm{G}}=0 \\
& \mathrm{I}_{\mathrm{B}}=0
\end{aligned}
$$

Saturation Region of Operation

$$
I_{D}=\mu C_{o x} \frac{W}{L}\left(V_{G S}-V_{T}-\frac{V_{D S}}{2}\right) V_{D S}
$$

For $V_{D S}$ at saturation
or equivalently

$$
\begin{aligned}
& \mathbf{I}_{\mathrm{D}}=\boldsymbol{\mu} \mathbf{C}_{\mathrm{Ox}} \frac{\mathbf{W}}{\mathbf{L}}\left(\mathbf{V}_{\mathrm{GS}}-\mathbf{V}_{\mathrm{T}}-\frac{\mathbf{V}_{\mathrm{GS}}-\mathbf{V}_{\mathrm{T}}}{2}\right)\left(\mathbf{V}_{\mathrm{GS}}-\mathbf{V}_{\mathrm{T}}\right) \\
& \text { or equivalently } \\
& \mathbf{I}_{\mathrm{D}}=\frac{\mu \mathrm{C}_{\mathrm{Ox}} \mathbf{W}}{2 \mathrm{~L}}\left(\mathbf{V}_{\mathrm{GS}}-\mathbf{V}_{\mathrm{T}}\right)^{2} \\
& \mathbf{I}_{\mathrm{G}}=\mathrm{I}_{\mathrm{B}}=\mathbf{0}
\end{aligned}
$$

n-Channel MOSFET Operation and Model

Increase V_{DS} even more (beyond $\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}$)
Nothing much changes !!
Termed "saturation"region of operation

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{D}}=? \\
& \mathrm{I}_{\mathrm{G}}=0 \\
& \mathrm{I}_{\mathrm{B}}=0
\end{aligned}
$$

Saturation Region of Operation

For $V_{D S}$ in Saturation

$$
\begin{aligned}
& I_{D}=\frac{\mu C_{O X} W}{2 L}\left(V_{G S}-V_{T}\right)^{2} \\
& I_{G}=I_{B}=0
\end{aligned}
$$

Model Summary

$$
I_{D}= \begin{cases}0 & V_{G S} \leq V_{T} \\ \mu C_{0 x} \frac{W}{L}\left(V_{G S}-V_{T}-\frac{V_{D S}}{2}\right) V_{D S} & V_{G S} \geq V_{T} V_{D S}<V_{G S}-V_{T} \\ \mu C_{0 x} \frac{W}{2 L}\left(V_{G S}-V_{T}\right)^{2} & V_{G S} \geq V_{T} V_{D S} \geq V_{G S}-V_{T}\end{cases}
$$

Note: This is the third model we have introduced for the MOSFET

Modeling of the MOSFET

Goal: Obtain a mathematical relationship between the port variables of a device.

Modeling of the MOSFET

Goal: Obtain a mathematical relationship between the port variables of a device.

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{D}}=\mathrm{f}_{1}\left(\mathbf{V}_{\mathrm{GS}}, \mathbf{V}_{\mathrm{DS}}, \mathbf{V}_{\mathrm{BS}}\right) \\
& \mathrm{I}_{\mathrm{G}}=\mathrm{f}_{2}\left(\mathbf{V}_{\mathrm{GS}}, \mathbf{V}_{\mathrm{DS}}, \mathbf{V}_{\mathrm{BS}}\right) \\
& \mathrm{I}_{\mathrm{B}}=\mathrm{f}_{3}\left(\mathbf{V}_{\mathrm{GS}}, \mathbf{V}_{\mathrm{DS}}, \mathbf{V}_{\mathrm{BS}}\right)
\end{aligned}
$$

End of Lecture 15

