EE 434 Lecture 15

Devices in Semiconductor Processes

Quiz 10

The resistors in this strain-gauge bridge circuit have a temperature coefficient that is +200ppm/°C and measured unstrained resistance value at T=300°K of 100 Ω . Assume that the temperature of R₄ was 30°C higher than that of the remaining resistors which are all operating at 300°K. If the signal information is carried in the change in R₂ which is 0.01 Ω . What percent error in V_{OUT} is introduced by the temperature variation of R₄?

And the number is 1 ⁸ ⁷ 5 3 ⁶ 9 4 2

Quiz 10 Solution:

The resistors in this strain-gauge bridge circuit have a temperature coefficient that is +200ppm/°C and measured unstrained resistance value at T=300°K of 100 Ω . Assume that the temperature of R₄ was 30°C higher than that of the remaining resistors which are all operating at 300°K. If the signal information is carried in the change in R₂ which is 0.01 Ω . What percent error in V_{OUT} is introduced by the temperature variation of R₄?

$$V_{RR} \stackrel{(+)}{\leftarrow} V_{OUT} \stackrel{(+)}{\leftarrow} V_{OUT} \stackrel{(+)}{\leftarrow} V_{OUT} \stackrel{(+)}{\leftarrow} V_{OUT} \stackrel{(+)}{\leftarrow} V_{OUT} \stackrel{(+)}{\leftarrow} V_{RR} \begin{pmatrix} R_{2A} \\ R_{1N} + R_{2A} \\ R_{4N} + R_{3N} \end{pmatrix}$$

$$V_{OUTD} = V_{RR} \begin{pmatrix} 100.01 \\ 200.01 \\ - \frac{100}{200} \end{pmatrix} = V_{RR} (2.49E - 5)$$

$$R_{2} \stackrel{(+)}{\leftarrow} R_{4} \qquad R_{4} (T_{2}) \approx R_{4} (T_{1}) \left[1 + (T_{2} - T_{1}) \frac{TCR}{10^{6}} \right]$$

$$R_{4} (T_{2}) \approx 100 \left[1 + (30) \frac{200}{10^{6}} \right] = 100.6\Omega$$

 $V_{RR} \stackrel{(+)}{\stackrel{(+)}{=}} R_{1} \stackrel{(+)}{\stackrel{(+)}{=}} R_{3} \quad V_{OUTD} = V_{RR} \left(\frac{100.01}{200.01} - \frac{100}{200} \right) = V_{RR} (2.49E - 5)$ $V_{RR} \stackrel{(+)}{\stackrel{(+)}{=}} V_{OUT} \stackrel{(+)}{\stackrel{(+)}{=}} V_{OUT} \stackrel{(+)}{\stackrel{(+)}{=}} V_{OUTA} = V_{RR} \left(\frac{R_{2A}}{R_{1N} + R_{2A}} - \frac{R_{4NT}}{R_{4NT} + R_{3N}} \right)$ \forall $V_{\text{OUTA}} = V_{\text{RR}} \left(\frac{100.01}{100 + 100.01} - \frac{100.6}{100.6 + 100} \right) = V_{\text{RR}} \left(1.47 \text{E} - 3 \right)$ $Error = \frac{V_{OUTD} - V_{OUTA}}{V_{OUTD}} 100\% = \frac{2.49E - 5 - 1.47E - 3}{2.49E - 5} 100\%$

Review from Last Time Basic Devices and Device Models

Resistor

- MOSFET
- BJT

Review from Last Time

pn Junctions

Diode Equation:
$$I = \begin{cases} J_s A e^{\frac{V}{nV_T}} & V > 0\\ 0 & V < 0 \end{cases}$$

 J_{S} = Sat Current Density A= Junction Cross Section Area V_{T} =kT/q n is approximately 1 Review from Last Time Capacitors

- Types
 - Parallel Plate
 - Fringe
 - Junction

Review from Last Time Parallel Plate Capacitors

A = area of intersection of
$$A_1 \& A_2$$

One (top) plate intentionally sized smaller to determine C

$$\mathbf{C} = \mathbf{C}_{\mathsf{d}} \mathbf{A}$$

Review from Last Time Fringe Capacitors

Review from Last Time Capacitance

C

 $\frac{\mathbf{C}_{jo}\mathbf{A}}{\mathbf{V}_{\mathbf{D}}}^{\mathsf{n}}$

ΦΒ

 $\phi_{\mathsf{B}}\cong 0.6V$

Note: d is voltage dependent
-capacitance is voltage dependent
-usually parasitic caps
-varicaps or varactor diodes exploit voltage dep. of C

 C_{j0} : junction capacitance at $V_D = 0V$

 ϕ_B : barrier or built-in potential

for $V_{FB} < \frac{\Psi_B}{2}$

Basic Devices and Device Models

- Resistor
- Diode
- Capacitor

• BJT

Operation and Modeling of MOSFET

Goal: Obtain a mathematical relationship between the port variables of a device.

Strategy

Develop multiple models that are useful for specific classes of applications

Use as simple of a model as we can justify

Often must consider a modestly more complicated model to justify a simpler model

Goal: Obtain a mathematical relationship between the port variables of a device. $I_D = f_1(V_{GS}, V_{DS}, V_{BS})$

Goal: Obtain a mathematical relationship between the port variables of a device. $I_{D} = f_{1}(V_{GS}, V_{DS}, V_{BS})$

n-Channel MOSFET

p-sub

n-Channel MOSFET

n-Channel MOSFET

 $\begin{array}{l} \mbox{Apply small } V_{GS} \\ (V_{DS} \mbox{ and } V_{BS} \mbox{ assumed to be small}) \\ \mbox{Depletion region at drain and source block current} \\ \mbox{Termed "cutoff" region of operation} \end{array}$

 $I_D = 0$ $I_G = 0$ $I_B = 0$

Apply small V_{GS} but a little larger than before (V_{DS} and V_{BS} assumed to be small) Depletion region electrically induced in channel Termed "cutoff" region of operation

I_D=0 I_G=0 I_B=0

Increase V_{GS} (V_{DS} and V_{BS} assumed to be small) Depletion region in channel becomes larger

I_D=0 I_G=0 I_B=0

Increase V_{GS} more

Inversion layer forms in channel Inversion layer will support current flow from D to S Channel behaves as thin-film resistor $I_D R_{CH} = V_{DS}$ $I_G = 0$ $I_B = 0$

Increase V_{GS} more

Inversion layer in channel thickens

R_{CH} will decrease

Termed "ohmic" or "triode" region of operation

 $I_D R_{CH} = V_{DS}$ $I_G = 0$ $I_B = 0$

Triode Region of Operation

For V_{DS} small $R_{CH} = \frac{L}{W} (V_{GS} - V_{T})^{-1} \frac{1}{\mu C_{OX}}$

$$I_{D} = \mu C_{OX} \frac{W}{L} (V_{GS} - V_{T}) V_{DS}$$
$$I_{G} = I_{B} = 0$$

Increase V_{DS}

Inversion layer thins near drain $I_D = ?$ I_D no longer linearly dependent upon V_{DS} $I_G = 0$ Still termed "ohmic" or "triode" region of operation $I_B = 0$

Triode Region of Operation

$$I_{D} = \mu C_{OX} \frac{W}{L} \left(V_{GS} - V_{T} - \frac{V_{DS}}{2} \right) V_{DS}$$
$$I_{G} = I_{B} = 0$$

Increase V_{DS} even more

Inversion layer disappears near drain Termed "saturation" region of operation Saturation first occurs when $V_{DS}=V_{GS}-V_{T}$ I_D=? I_G=0 I_B=0

For V_{DS} in Saturation

$$I_{D} = \frac{\mu C_{OX} W}{2L} (V_{GS} - V_{T})^{2}$$
$$I_{G} = I_{B} = 0$$

Model Summary

Note: This is the third model we have introduced for the MOSFET

Goal: Obtain a mathematical relationship between the port variables of a device. $I_{D} = f_{1}(V_{GS}, V_{DS}, V_{BS})$

Drain

Goal: Obtain a mathematical relationship between the port variables of a device. $I_D = f_1(V_{GS}, V_{DS}, V_{BS})$

End of Lecture 15