EE 434 Lecture 34

Logic Design

Transfer characteristics of the static CMOS inverter

 (Neglect λ effects)Case $5 \quad M_{1}$ cutoff, M_{2} triode

Transfer characteristics of the static CMOS inverter

 (Neglect λ effects)

Transfer characteristics of the static CMOS inverter

 (Neglect λ effects)

Inverter Transfer Characteristics of Inverter Pair

Review from last time:

Static CMOS Logic Family

Observe PUN is p-channel, PDN is n-channel

Review from last time:
Static CMOS Logic Family

n-channel PDN and p-channel PUN

Static CMOS Logic Family

$A-D$
B
Y

- Any number of inputs can be added to NAND or NOR Gates
- NAND and NOR Logic Families are Complete
- Can now build ANY combinational logic function !

Review from last time:

General Logic Family

Arbitrary PUN and PDN

Review from last time:

Other CMOS Logic Families

Static Power Dissipation in Static CMOS Family

When $\mathrm{V}_{\text {OUT }}$ is Low, $\mathrm{I}_{\mathrm{D} 1}=0$
When $\mathrm{V}_{\mathrm{OUT}}$ is High, $\mathrm{I}_{\mathrm{D} 2}=0$
Thus, $\mathrm{P}_{\text {STATIC }}=0$

This is a key property of the static CMOS Logic Family and is the major reason Static CMOS Logic is so dominant

It can be shown that this zero static power dissipation property can be preserved if the PUN is comprised of n-channel devices, the PDN is comprised of n-channel devices and they are never both driven into the conducting states at the same time

Static Power Dissipation in Ratio Logic Families

Example: \quad Assume $V_{D D}=5 \mathrm{~V}$

$$
\mathrm{V}_{\mathrm{T}}=1 \mathrm{~V}, \mu \mathrm{C}_{\mathrm{ox}}=10^{-4} \mathrm{~A} / \mathrm{V}^{2}, \mathrm{~W}_{1} / \mathrm{L}_{1}=1 \text { and } \mathrm{M}_{2} \text { sized so that } \mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{Tn}}
$$

Enhancement Load NMOS

$$
P_{\mathrm{L}}=(5 \mathrm{~V})(0.25 \mathrm{~mA})=1.25 \mathrm{~mW}
$$

If a circuit has 100,000 gates and half of them are in the $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{L}}$ state, the static power dissipation will be

$$
P_{\text {STATIC }}=\frac{1}{2} 10^{5} \cdot 1.25 \mathrm{~mW}=\mathbf{6 2 . 5 W}
$$

This power dissipation is way too high and would be even larger in circuits with 100 million or more gates - the level of integration common in SoC circuits today

Review from last time:

Propagation Delay in Static CMOS Family

Switch-level model of Static CMOS inverter (neglecting diffusion parasitics)

Review from last time:

Propagation Delay in Static CMOS Family

Switch-level model of Static CMOS inverter (neglecting diffusion parasitics)

Propagation Delay in Static CMOS Family

Since operating in triode through most of transition:

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{D}} \cong \frac{\mu \mathrm{C}_{\mathrm{ox}} \mathrm{~W}}{\mathrm{~L}}\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}-\frac{\mathbf{Y}_{\mathrm{DS}}}{\mathrm{Q}}\right) \mathrm{V}_{\mathrm{DS}} \cong \frac{\mu \mathrm{C}_{\mathrm{OX}} \mathrm{w}}{\mathrm{~L}}\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}\right) \mathrm{V}_{\mathrm{DS}} \\
& R_{P D}=\frac{L_{1}}{\mu_{n} C_{o x} W_{1}\left(V_{D D}-V_{T n}\right)} \quad R \simeq \frac{L}{\mu C_{C \&} \omega\left(U_{G \&}-V_{T}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{IN}}=\mathbf{C}_{\mathrm{OX}}\left(\mathbf{W}_{1} \mathrm{~L}_{1}+\mathbf{W}_{\mathbf{2}} \mathbf{L}_{2}\right) \\
& R_{D \pi}=\frac{L_{2}}{M_{p} C_{O_{Q} L_{2}\left(U_{D D}+U_{T p}\right)}}
\end{aligned}
$$

Propagation Delay in Static CMOS Family

If $\mathrm{u}_{\mathrm{n}} \mathrm{C}_{\mathrm{OX}}=100 \mu \mathrm{AV} \mathrm{V}^{-2}, \mathrm{C}_{\mathrm{OX}}{ }^{\prime}=4 \mathrm{fF} \mu^{-2}, \mathrm{~V}_{\mathrm{Tn}}^{\prime}=\mathrm{V}_{\mathrm{DD}} / 5, \mathrm{~V}_{\mathrm{TP}} \stackrel{\vee}{ }=-\mathrm{V}_{\mathrm{DD}} / 5, \mu_{\mathrm{n}}^{\prime} / \mu_{\mathrm{p}}=3, \mathrm{~L}_{1}=\mathrm{W}_{1}=\mathrm{L}_{\mathrm{MIN}}$, $\mathrm{L}_{2}=\mathrm{W}_{2}=\mathrm{L}_{\mathrm{MIN}}, \mathrm{L}_{\mathrm{MIN}}=0.5 \mu$ and $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{PD}}=\frac{1}{10^{-4} \cdot 0.8 \mathrm{~V}_{\mathrm{DD}}}=2.5 \mathrm{~K} \Omega \quad \mathrm{C}_{\mathrm{IN}}=4 \bullet 10^{-15} \bullet 2 \mathrm{~L}_{\mathrm{MIN}}^{2}=2 \mathrm{fF} \\
& \mathrm{R}_{\mathrm{PU}}=\frac{1}{10^{-4} \cdot \frac{1}{3} \cdot 0.8 \mathrm{~V}_{\mathrm{DD}}}=7.5 \mathrm{~K} \Omega
\end{aligned}
$$

Propagation Delay in Static CMOS Family

If $\mathrm{u}_{\mathrm{n}} \mathrm{C}_{\mathrm{OX}}=100 \mu \mathrm{AV}^{-2}, \mathrm{C}_{\mathrm{OX}}=4 \mathrm{fF}^{-2}, \mathrm{~V}_{\mathrm{Tn}}=\mathrm{V}_{\mathrm{DD}} / 5, \mathrm{~V}_{\mathrm{TP}}=-\mathrm{V}_{\mathrm{DD}} / 5, \mu_{\mathrm{n}} / \mu_{\mathrm{p}}=3, \mathrm{~L}_{1}=\mathrm{W}_{1}=\mathrm{L}_{\mathrm{MIN}}$, $\mathrm{L}_{2}=\mathrm{W}_{2}=\mathrm{L}_{\text {MIN }}, \mathrm{L}_{\text {MIN }}=0.5 \mu$ and $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$

$$
\begin{array}{ll}
\mathrm{R}_{\mathrm{PD}}=\frac{1}{10^{-4} \cdot 0.8 \mathrm{~V}_{\mathrm{DD}}}=2.5 \mathrm{~K} \Omega & \mathrm{C}_{\mathrm{IN}}=4 \bullet 10^{-15} \cdot 2 \mathrm{~L}_{\mathrm{MIN}}^{2}=2 \mathrm{fF} \\
\mathrm{R}_{\mathrm{PU}}=\frac{1}{10^{-4} \cdot \frac{1}{3} \cdot 0.8 \mathrm{~V}_{\mathrm{DD}}}=7.5 \mathrm{~K} \Omega &
\end{array}
$$

Propagation Delay in Static CMOS Family

Consider:
For HL output transition, C_{L} charged to V_{DD}

Propagation Delay in Static CMOS Family

For HL output transition, C_{L} charged to V_{DD}

What is the transition time t_{HL} ?

Propagation Delay in Static CMOS Family

Propagation Delay in Static CMOS Family

Propagation Delay in Static CMOS Family

$$
\begin{aligned}
\mathbf{t}_{\mathrm{HL}} & \cong \mathbf{R}_{\mathrm{PD}} \mathbf{C}_{\mathrm{L}} \\
v \mathbf{t}_{\mathrm{LH}} & \cong \mathbf{R}_{\mathrm{PU}} \mathbf{C}_{\mathrm{L}}
\end{aligned}
$$

Propagation Delay in Static CMOS Family

$$
f H L=?
$$

$$
t_{6} H=\text { ? }
$$

$$
\begin{aligned}
t_{H K} & =R_{P O} C_{L} \\
& =(2.5 k)(2 f F)=5 p s \\
t_{L H} & =R_{P H} C_{L} \\
& =(7.5 k)(2 F F)=15 \mathrm{psec}
\end{aligned}
$$

$$
\simeq 2 \kappa F
$$

at miniman aims

$$
\begin{aligned}
& \text { If } \\
& t_{C L}=t_{\mathrm{HL}}+t_{L \mu}=20 \mathrm{psec} \\
& \Rightarrow f_{C_{L}}=506 \mathrm{H}_{2}
\end{aligned}
$$

Propagation Delay in Static CMOS Family

CIR

- driving multiple imports slows down th last

Device Sizing
a) Minimum sized
b) $F_{1}+V_{T R I P}\left(V_{D D} /_{2}\right)$

c) obtain equal rise of fall tines
a) Minimum pone dissipation
e) Minimises tin mezuived to dome a given load

