EE 434 Lecture 37

Propagation Delay in Logic Circuits Power Dissipation Review from last time

Propagation Delay in Multiple-Levels of Logic with Stage Loading

Analysis strategy : Express delays in terms of those of reference inverter

Review from last time Propagation Delay in Multiple-Levels of Logic with Stage Loading

Capacitive Loading

Define the Fan In loading on the stage to be the total capacitive load on the stage normalized to $\rm C_{REF}$

$$\mathsf{F}_{\mathsf{IL}} = \frac{\mathsf{C}_{\mathsf{L}}}{\mathsf{C}_{\mathsf{REF}}}$$

If inverter sized for equal rise/fall

$$\mathbf{t}_{\mathsf{HL}} = \mathbf{t}_{\mathsf{LH}} = \mathbf{R}_{\mathsf{PD}} \mathbf{C}_{\mathsf{L}} = \mathbf{R}_{\mathsf{PD}} \mathbf{C}_{\mathsf{REF}} \mathbf{F}_{\mathsf{IL}}$$

$$t_{PROP} = t_{LH} + t_{HL} = 2 R_{PD} C_{REF} F_{IL}$$

If inverter is the reference inverter

Review from last time Propagation Delay in Multiple-Levels of Logic with Stage Loading

Overdrive

Define the Overdrive Factor of the stage to be the factor by which PU and PD resistors are scaled relative to those of the reference inverter.

$$R_{PDEFF} = \frac{R_{PDREF}}{OD_{HL}} \qquad R_{PUEFF} = \frac{R_{PUREF}}{OD_{LH}}$$
If inverter sized for equal rise/fall, $OD_{HL} = OD_{LH} = OD$

$$t_{HL} = t_{LH} = \frac{R_{PDREF}}{OD} C_{L} = R_{PDREF} C_{REF} \frac{F_{IL}}{OD}$$

$$t_{PROP} = t_{LH} + t_{HL} = t_{REF} \frac{F_{IL}}{OD}$$
OD may be larger or smaller than 1

Propagation Delay in Multiple-Levels of Logic with Stage Loading

Overdrive Notation

- OD O-

Equal Rise/Fall with overdrive OD

Rise/Fall may be different with overdrive OD_{HL} and OD_{LH}

OD_{HL}

OD_{LH}

Equal Rise/Fall with overdrive of 8

If W_n - W_{MIN} , minimum sized inverter

Propagation Delay in Multiple-Levels of Logic with Stage Loading

Example:

Propagation Delay in Multiple-Levels of Logic with Stage Loading

for m levels of logic

$$t_{PROP} = \sum_{i=1}^{m} t_{PROP_i} = t_{REF} \sum_{i=1}^{m} \frac{FI_{i+1}}{OO_i}$$

Propagation Delay in Multiple-Levels of Logic with Stage Loading

t

Lprop = t, +t2 +t3

$$u = t_{Rem} \left(\frac{c_{u}}{c_{RE}} + \frac{1}{2} + \frac{1}{4} \right) (4)$$

2

$$t_{2} = t_{\frac{\alpha}{2}} \left[\frac{1}{2} + \frac{1}{2} \right] \left[\frac{1}{1} + \frac{1}{\frac{1}{3}} \right]$$
$$t_{3} = t_{\frac{\alpha}{2}} \left[\frac{c_{\alpha}}{c_{\alpha}} \right] \left[\frac{1}{1} + \frac{1}{\frac{1}{3}} \right]$$

Propagation Delay in Multiple-Levels of Logic with Stage Loading

