EE 434 Lecture 4

Digital Systems – A preview

Quiz 2

A die is 2500u on a side, comes from an 8" wafer that costs \$1200 in a process with a defect density of 1.2/cm². Determine the cost per good die as limited by the hard faults in processing.

Quiz 2 A die is 2500u on a side, comes from an 8" wafer that costs \$1200 in a process with a defect density of 1.2/cm². Determine the cost per good die as limited by the hard faults in processing.

Solution:

Quiz 2 A die is 2500u on a side, comes from an 8" wafer that costs \$1200 in a process with a defect density of 1.2/cm². Determine the cost per good die as limited by the hard faults in processing.

Solution:

$$C_{\text{GOOD}} = C_{\text{WAFER}} \frac{A_{\text{DIE}}}{A_{\text{WAFER}}} e^{A_{\text{DIE}}d} = \$1200 \frac{(2500\,\mu)^2}{\pi 16 in^2} e^{(2500\,\mu)^2 \frac{1.2}{cm^2}}$$

$$C_{GOOD} = \frac{\$0.231}{.928} = \$0.249$$

Review from Last Time

- Device Geometries Limited by Size of Atoms
- Hard Yield Decreases with Area

$$Y_{\rm H} = e^{-Ad}$$

Major factor that limits die size

• Soft yield generally increases with die area

$$\mathbf{Y} = \mathbf{Y}_{\mathrm{H}}\mathbf{Y}_{\mathrm{S}}$$

- 6-Sigma Challenge More of a Process (Religion) than Actual Procedure
 - 6-sigma too stringent for many requirements
 - 6-sigmal too lax for many others
 - Cost/good die ultimately of primary interest

Basic Logic Circuits

- Will present a brief description of logic circuits based upon simple models and qualitative description of processes
- Will discuss process technology needed to develop better models
- Will provide more in-depth discussion of logic circuits based upon better device models

MOS Transistor Qualitative Discussion of n-channel Operation

MOS Transistor Qualitative Discussion of n-channel Operation

Bulk Behavioral Description of Basic Operation

If V_{GS} is large, short circuit exists between drain and source

If V_{GS} is small, open circuit exists between drain and source

MOS Transistor Qualitative Discussion of n-channel Operation

Equivalent Circuit for n-channel MOSFET

MOS Transistor Qualitative Discussion of p-channel Operation

MOS Transistor Qualitative Discussion of p-channel Operation

Behavioral Description of Basic Operation

If V_{GS} is small (negative), short circuit exists between drain and source If V_{GS} is large (near 0), open circuit exists between drain and source

MOS Transistor Qualitative Discussion of p-channel Operation

Equivalent Circuit for p-channel MOSFET

- These represent simple models for the MOS Transistor
- This simple model is adequate for some digital system design work
- More accurate models often needed for other aspects of digital design and for almost all analog design

MOS Transistor Comparison of Operation

Circuit Behaves as a Boolean Inverter

Truth Table

А	В	С
0	0	1
0	1	0
1	0	0
1	1	0

Complex Gates

Complex Gates

Pull up and pull down network never both conducting

One of the two networks is always conducting

Consider

Alternate Implementation

3 levels of Logic

16 Transistors if Basic CMOS Gates are Used

Consider $\mathbf{Y} = \mathbf{A} \bullet \mathbf{B}$

Standard CMOS Implementation

2 levels of Logic

6 Transistors if Basic CMOS Gates are Used

Basic noninverting functions generally require more complexity if basic CMOS gates are used for implementation

Requires only 2 transistors rather than 6 for a standard CMOS gate (and a resistor).

Even simpler pass transistor logic implementations are possible

Requires only 1 transistor (and a resistor).

Requires only 1 transistor (and a resistor)

- Resistor may require more area than several hundred or even several thousand transistors
- -Signal levels may not go to V_{DD} or to 0V
- Static power dissipation may not be zero
- -Signals may degrade unacceptably if multiple gates are cascaded
- -"resistor" often implemented with a transistor to reduce area but signal swing and power dissipation problems still persist
- -Pass transistor logic is widely used

Logic Design Styles

- Several different logic design styles are often used throughout a given design
- The designer has complete control over what is placed on silicon and governed only by cost and performance
- New logic design strategies have been proposed recently and others will likely emerge in the future
- The digital designer needs to be familiar with the benefits and limitations of varying logic styles to come up with a good solution for given system requirements

End of Lecture 4