EE 434 Exam 1 Fall 2004 Name _____

Instructions. Students may bring two 8.5×11 pages of notes to this exam. On the exam, there are a set of short questions and 4 problems. All questions are worth 2 points and each problem is worth 20 points. All work and answers are to appear on this exam sheet. Attach additional sheets only if you run out of room on the examination itself.

If references to a semiconductor processes are needed and are not specified, assume a CMOS process is available with the following key process parameters; $\mu_n C_{OX}=100\mu A/v^2$, $\mu_p C_{OX}=30\mu A/v^2$, $V_{TNO}=0.5V$, $V_{TPO}=-0.5V$, $C_{OX}=2fF/\mu^2$, $\lambda = 0$, $\gamma = 0$. If more detailed information is needed, consult the process information attached as the last page of this exam. If any other process parameters are needed, specify clearly what process parameter is needed and specify a typical value for that parameter.

Questions

1. What is the major reason that depletion transistors are not available in most standard bulk CMOS processes?

2. What is the purpose of the silicide processing step in a CMOS process?

3. If a field oxide is thermally grown on a silicon substrate to a thickness of $\overset{\circ}{A}$, how deep will the field oxide extend into the original silicon surface?

4. What is the minimum channel length in a state of the art CMOS process?

5. When was the BJT transistor first created?

6. How do the physical properties of an n-type epitaxial layer differ from those of an n-type diffused layer?

7. What are the two major limitations of using reverse-biased pn junctions as capacitors?

8. Why are contacts to poly on top of the channel of a MOSFET usually not permitted?

9 What is the small-signal equivalent circuit for a large inductor?

What is the dc equivalent circuit for a large capacitor?

10. What is the long-term failure mechanism associated with aluminum interconnects called and why is this mechanism problematic?

Problem 1 Determine the approximate cost per good die in a 0.25u process in which an 8 inch wafer costs \$2600 if the die is rectangular of dimensions 1600μ by 1200μ and if the defect density is $1.25/\text{cm}^2$.

Problem 2 Determine the small signal equivalent for the following three-terminal device. You may assume that both transistors are operating in the saturation region and that $V_{BS}=0$. Use the simple Sah/Shockley model for the devices.

Problem 3 Assume the input to the following circuit is $V_{IN} = .05sin4000 t$, C is large, and the process is characterized by $V_T=1V$ and $\mu C_{OX}=100\mu A/V^2$.

- a) Determine the quiescent drain current and the quiescent output voltage
- b) Draw a small signal equivalent circuit
- c) Determine the small signal voltage gain $A_v = \frac{v_{OUT}}{v_{IN}}$
- d) Give an expression for the total output voltage

Problem 4 The layout of a simple circuit in an n-well bulk CMOS process is shown below. Assume the substrate is connected to 0V.

- a) Sketch a cross-sectional view of the die that will be formed with this layout along the AA' section line
- b) Assume the drain of the transistor is the upper diffusion. Determine the drainsubstrate capacitance if $V_X=0$ and if $V_X=5V$
- c) Determine the maximum voltage V_X that will keep the transistor operating in the triode region.

Use the process parameters listed on the last page of this exam to solve this problem.

TRANSISTOR PARAMETERS	W/1	Ľ	N-CHANNEI	P-CHANN	EL	UNITS		
MINIMUM Vth	3.(0/0.6	0.78	3 -0.	93	volts		
SHORT Idss Vth Vpt	20	.0/0.6	439 0.69 10.0	-238 -0. -10.	90 0	uA/um volts volts		
WIDE Ids0	20	.0/0.6	< 2.5	< 2.	5	pA/um		
LARGE Vth Vjbkd Ijlk Gamma K' (Uo*Cox/2) Low-field Mobility COMMENTS: XL_AMI_C5F	50,	/50	0.70 11.4 <50.0 0.50 56.9 474.57	$\begin{array}{ccc} & -0. \\ & -11. \\ & < 50. \\ 0 & 0. \\ & -18. \\ 7 & 153. \end{array}$	95 7 0 58 4 46	volts pA V^0.5 uA/V^2 cm^2/V*s		
FOX TRANSISTORS Vth	GAT Pol	re ly	N+ACTIVE >15.0	E P+ACTI <-15.	VE 0	UNITS volts		
PROCESS PARAMETERS Sheet Resistance Contact Resistance Gate Oxide Thickness	N+ACTV 82.7 56.2 144	P+ACTV 103.2 118.4	7 POLY F 21.7 14.6	984	POLY 39.7 24.0	2 MTL1 0.09	MTL2 0.09 0.78 ang	UNITS ohms/sq ohms strom
PROCESS PARAMETERS Sheet Resistance Contact Resistance		MTL3 0.05 0.78	N\PLY 824	N_WEL 815	L	UNITS ohms/sq ohms		

COMMENTS: N\POLY is N-well under polysilicon.

CAPACITANCE PARAMETERS	N+ACTV	P+ACTV	POLY	POLY2	M1	М2	М3	N_WELL	UNITS
Area (substrate)	429	721	82		32	17	10	40	aF/um^2
Area (N+active)			2401		36	16	12		aF/um^2
Area (P+active)			2308						aF/um^2
Area (poly)				864	61	17	9		aF/um^2
Area (poly2)					53				aF/um^2
Area (metall)						34	13		aF/um^2
Area (metal2)							32		aF/um^2
Fringe (substrate)	311	256			74	58	39		aF/um
Fringe (poly)					53	40	28		aF/um
Fringe (metall)						55	32		aF/um
Fringe (metal2)							48		aF/um
Overlap (N+active)			206						aF/um
Overlap (P+active)			278						aF/um