Name _____

EE 434 Exam 2 Fall 2004

Instructions: Answer the following questions and solve the following problems. In problems relating to timing or delay calculations, assume you are working in a process characterized by $C_{REF}=4C_{OX}W_{min}L_{min}=2fF$ and that a minimum-sized equal rise/fall reference inverter has a $t_{REF}=t_{HL}+t_{LH}$ of 20psec. If other parameters are needed, refer to the process description appended to this exam. The relative weighting of all questions and problems are indicated.

Questions

- 1. (2 pts) What is the purpose of the "keeper" transistor in a dynamic logic gate?
- 2. (2pts) What are the two major benefits of Static CMOS logic over NMOS logic?
- 3. (2pts) Pass transistor logic (PTL) can be very compact. What are the two major limitations of PTL?
- 4. (2pts) What are the two major benefits the dynamic logic gate compared to Static CMOS?
- 5. (2pts) There are three hierarchical levels identified in the design process. What are they?
- 6. (2pts) When using synthesis tools for synthesizing logic, what level in the hierarchy will the designer usually work in?
- 7. (2pts) How does the total propagation delay of an inverter driving an identical inverter compare if the two inverters are both minimum sized compared to the case where they are both minimum-sized equal rise/fall time devices?
- 8. (3pts) A 3-input NOR gate in Static CMOS is minimum sized. What is the overdrive (OD) for the pull-up network and for the pull-down network?

9. (3pts) How much power is required in the output stage of a pad drier to drive a 1pF load with a 200MHz square-wave clock if the supply voltage is 5V?

Implement the function $F = A\overline{B} + B\overline{C}$, at the transistor level, in Problem 1 (20 pts)

- Static CMOS a)
- Pass Transistor Logic Complex Logic Gates b)
- c)
- Domino Logic d)

You need not give transistor sizes.

Problem 2 (20 pts) The overdrive factor for each equal rise/fall Gate is shown. Determine the width of all devices to achieve the given overdrive if $L=L_{min}$ for all devices. Give the width in terms of the minimum width, W_{min} , of the process.

Problem 3 (20 pts)

- a) Determine the propagation delay from F to H for the following circuit. The devices are all sized for equal worst case rise and fall times and the overdrive factors, if different from 1, are as indicated.
- b) Repeat part a) if all devices are minimum sized.

Page 6 of 6

Problem 4 (20 pts) The following complex logic gate has one or more errors in the Pull Up Network but the Pull Down Network is correct.

- a) What is the Boolean Function this network is trying to implement to the F output?
- b) Identify the error or errors in the Pull Up Network and correct them so that it implements the correct function.

MOSIS file ami-c5-t47f-params MOSIS file ami-c5/t47f-params.txt MOSIS PARAMETRIC TEST RESULTS

RUN: T47F TECHNOLOGY: SCN05 VENDOR: AMIS FEATURE SIZE: 0.5 microns

INTRODUCTION: This report contains the lot average results obtained by MOSIS from measurements of MOSIS test structures on each wafer of this fabrication lot. SPICE parameters obtained from similar measurements on a selected wafer are also attached.

COMMENTS: American Microsystems, Inc. C5

TRANSI STOR PARA	AMETERS	W/L	N-CHANNEL	P-CHANNEL	UNI TS
MINIMUM Vth		3.0/0.6	0. 79	-0.94	vol ts
SHORT Idss Vth Vpt		20. 0/0. 6	456 0.68 10.0	-237 -0. 92 -10. 0	uA/um volts volts
WI DE I ds0		20.0/0.6	< 2.5	< 2.5	pA/um
LARGE Vth Vj bkd Ij I k Gamma		50/50	0.70 11.4 <50.0 0.47	-0.96 -11.7 <50.0 0.59	volts volts pA V^0.5
K' (Uo*Cox/2) Low-field Mobi	lity		56.8 460.58	-18. 9 153. 26	uA/V^2 cm^2/V*s

COMMENTS: Poly bias varies with design technology. To account for mask bias use the appropriate value for the parameter XL in your SPICE model card.

	Design Technology					XL (u	m) XW	(um)	
	SCMOS_SUBM (I ambda=0.30) SCMOS (I ambda=0.35)					0. 10 0. 00	0 0	0. 00 0. 20	
FOX TRANSI STORS Vth	GA Po	TE I y	N+ACTI >15.	VE P+ACT 0 <-15	IVE UN .0 vol	TS ts			
PROCESS PARAMETERS Sheet Resistance Contact Resistance Gate Oxide Thickness	N+ 83.6 62.2 140	P+ 104. 8 155. 8	POLY 22. 1 15. 8	PLY2_HR 1106	POLY2 41. 3 27. 1	M1 0. 09	M2 0. 09 0. 93	UNITS ohms/sq ohms angstrom	
PROCESS PARAMETERS Sheet Resistance Contact Resistance		M3 0. 05 0. 90	N\PLY 827	N_W 820	UNI ohr ohr	∣TS ns∕sq ns			

f

COMMENTS: N\POLY is N-well under polysilicon.

MOSIS file ami-c5-t47f-params

CAPACI TANCE PARAMETERS	N+	P+	POLY	P0LY2	M1	M2	M3	N_W	UNI TS
Area (substrate)	427	733	88		33	16	10	40	aF/um^2
Area (N+active)			2459		37	16	12		aF/um^2
Area (P+active)			2378						aF/um^2
Area (poly)				851	63	16	9		aF/um^2
Area (poly2)					56				aF/um^2
Area (metal1)						30	13		aF/um^2
Area (metal2)							32		aF/um^2
Fringe (substrate)	318	248			78	58	39		aF/um
Fringe (poly)					54	38	28		aF/um
Fringe (metal1)						54	32		aF/um
Fringe (metal2)							46		aF/um
Overlap (N+active)			201						aF/um
Overlap (P+active)			261						aF/um

gate
ğate

COMMENTS: SUBMI CRON

 $\stackrel{\scriptscriptstyle 9}{\scriptscriptstyle -}$ T47F SPICE BSIM3 VERSION 3.1 PARAMETERS

SPICE 3f	5 Level 8, Star-H	SPICE Lev	vel 49, UTMOST Lev	vel 8	
* DATE: S * LOT: T4 * Tempera . MODEL CM + VERSI ON + XJ + K1 + K3B + DVTOW + DVTO + UO + UC + AGS + KETA + RDSW + WR + XL + DWB + CI T + CDSCB + DSUB	Sep 7/04 47F ature_parameters=[MOSN NMOS (= 3.1 = 1.5E-7 = 0.8764315 = -8.3446317 = 0 = 2.9897988 = 445.9725817 = 7.695866E-12 = 0.1359577 = -1.855847E-3 = 1.178836E3 = 1 = 1E-7 = 4.041426E-8 = 0 = 0 = 0.0565727	WAF: Default TNOM NCH K2 WO DVT1W DVT1 UA VSAT BO A1 PRWG WINT XW VOFF CDSC ETAO PCLM	7103 = 27 = 1.7E17 = -0.0960191 = 1E-8 = 0 = 0.406495 = 3.375657E-13 = 1.667171E5 = 2.63415E-6 = 4.012238E-4 = 0.0712685 = 2.61721E-7 = 0 = 0 = 2.4E-4 = 1.900849E-3 = 2.5500465	LEVEL TOX VTHO K3 NLX DVT2W DVT2 UB A0 B1 A2 PRWB LINT DWG NFACTOR CDSCD ETAB PDI BLC1	= 49 = 1.4E-8 = 0.669507 = 26.8630945 = 1E-9 = 0 = -0.1141743 = 1.408483E-18 = 0.5881706 = 5E-6 = 0.3442647 = 0.041833 = 7.671441E-8 = -1.440026E-8 = 0.8717986 = 0 = -5.655437E-5 = 0.9954206
			raye z		

+PDI BLC2 +PSCBE1 +DELTA +PRT +KT1L +UB1 +WL +WWN +LLN +LWL +CGD0 +CJ +CJSW +CJSWG	<pre>= 2.089469E-3 = 6.395601E8 = 0.01 = 0 = 0 = -7.61E-18 = 0 = 1 = 1 = 0 = 2.01E-10 = 4.255868E-4 = 2.932172E-10 = 1.64E-10</pre>	MOSI S PDI BLCB PSCBE2 RSH UTE KT2 UC1 WLN WWL LW CAPMOD CGSO PB PBSW PBSWG	fi = = = = = = = = = = = = = = = = = = =	le ami -c5-t47f- -0.0520065 2.051156E-4 83.6 -1.5 0.022 -5.6E-11 1 0 0 2 2.01E-10 0.926049 0.8 0.8	params DROUT PVAG MOBMOD KT1 UA1 AT WW LL LWN XPART CGBO MJ MJSW MJSWG		1.0119898 0 1 -0.11 4.31E-9 3.3E4 0 0 1 0.5 1E-9 0.4370254 0.1728427 0.1728427	
+CF	= 0	PVTHO	=	0.0255986	PRDSW	=	409.0242618	١
+PK2 * MODEL CM +VERSION +XJ +K1 +K3B +DVTOW +DVTO +UO +UC +AGS +KETA +RDSW +WR +XL +DWB +CIT +CDSCB +DSUB +PDI BLC2 +PSCBE1 +DELTA +PRT +KT1L +UB1 +WL +WN +LLN +LLN +LUN +CJSWG +CF +PK2 *	= -0.02491 $MOSP PMOS (= 3.1 = 1.5E-7 = 0.5418241 = -1.0081807 = 0 = 2.3587659 = 211.1145904 = -6.0993E-11 = 0.1602973 = -4.320086E-3 = 3E3 = 1 = 1E-7 = 1.933603E-8 = 0 = 0 = 1 = 3.452595E-3 = 5.323834E9 = 0.01 = 0 = 0 = -7.61E-18 = 0 = 1 = 1 = 0 = 2.61E-10 = 7.286969E-4 = 2.665117E-10 = 6.4E-11 = 0 = 3.73981E-3$	WKETA TNOM NCH K2 WO DVT1W DVT1 UA VSAT BO A1 PRWG WINT XW VOFF CDSC ETAO PCLM PDI BLCB PSCBE2 RSH UTE KT2 UC1 WLN WWL LW CAPMOD CGSO PB PBSW PBSWG PVTHO WKETA		-0. 0382391 27 1. 7E17 0. 012144 1E-8 0 0. 6843255 2. 893983E-9 1. 74595E5 6. 601323E-7 8. 373476E-5 -0. 0147222 2. 795144E-7 0 -0. 0812374 2. 4E-4 0. 2845389 2. 1560106 -0. 0527157 5E-10 104. 8 -1. 5 0. 022 -5. 6E-11 1 0 0 2 2. 61E-10 0. 9555601 0. 99 0. 99 5. 98016E-3 4. 223292E-3	LKETA LEVEL TOX VTHO K3 NLX DVT2W DVT2 UB AO B1 AO B1 A2 PRWB LINT DWG NFACTOR CDSCD ETAB PDI BLC1 DROUT PVAG MOBMOD KT1 UA1 AT WW LL LWN XPART CGBO MJ SW MJSWG PRDSW LKETA		3. 672763E-4 49 1. 4E-8 -0. 9324587 9. 1825002 6. 166062E-9 0 -0. 1522404 1. 79181E-21 0. 9399837 7. 465355E-7 0. 3 -0. 0192043 9. 155405E-8 -1. 255072E-8 0. 6840911 0 -0. 092965 0. 0404233 0. 2131398 0. 0149825 1 -0. 11 4. 31E-9 3. 3E4 0 0 1 0. 5 1E-9 0. 4953105 0. 2906618 14. 8598424 -5. 258673E-3)

Download Text File