EE 435
Lecture 37
Spring 2006

DAC Design
Review from Last Time

Current Steering DACs

– Op Amp removed for high-speed applications
– Differential output at minimal cost
– Current Steering
 • Steer Current with Differential Pair
 • Limit Swing so Devices Operate in Saturation/Cutoff
 • Self-Cascode Effect Improves Current Source
– Current Copier to Remove Matching Requirements
 • Still affected by output impedance of current sources
 • Clock feedthrough and sampling noise limit performance
 • Need for refreshing (can be done in background)
Calibrated Current Steering DAC

Uncalibrated Current Steering DAC
Calibrated Current Steering DAC
Generation of currents independently of V_{DD}

- V_{DD} independent current gen.

\mathcal{B} \mathcal{E} \mathcal{D} \mathcal{F} \mathcal{G} \mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M} \mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T} \mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z}

- V_{REF} band select
Supply independent biasing

\[
\frac{V_{REF}}{R}
\]
DAC Architectures

• String DACs
 – Interpolating DACs

• Current Steering DACs
 – Thermometer Coded
 – Binarily Weighted
 – Segmented DACs

Resistor-Based DACs

• Charge Redistribution DACs
Thermometer coded R-based DAC
- Reduces (Eliminates code dependence on switches)
- Real resistance is $R + R_{SW}$
- Fantastic DAC
- Switch impedance may not match as well as the R resistance
- B统筹 to Thermometer Decoders
- would to add 'dump' node at gnd
Binarily weighted R's
- DNL will be a problem
- eliminates decoder
- use unit cell to make R's
- adjust switch sizes (one may have code zero turn)
attractive alternative
Switch Implementation Issues

![Diagram of switch implementation issues]
- Small # resisters even when n is large
- No decoder
- INL problem
- DNL problem
- No decoder

- R-2R network must satisfy: for each code channel

\[S_1 \rightarrow S_{n+1} ^{R-2R} \text{ resistors} \]

- Modified R-2R DAC

- R-2R network must satisfy: for each code channel

\[S_1 \rightarrow S_{n+1} ^{R-2R} \text{ resistors} \]
DAC Architectures

• String DACs
 – Interpolating DACs

• Current Steering DACs
 – Thermometer Coded
 – Binarily Weighted
 – Segmented DACs
 – Digitally Calibrated DACs

• Resistor-Based DACs

Charge Redistribution DACs
Charge Redistribution DAC

- no decoder
- to a first order, switch impedes not of concern

\[Q_T = Q_n \left(2^n + \frac{Q_1}{2} + \frac{Q_2}{2^2} + \cdots + \frac{Q_n}{2^n} \right) \]

- matching or C ratios is important
- can convert to TC by making C's vertical
- segmentation is practical
EE 435

Lecture 38

ADC Design
Review from Last Time:

• Current Steering DACs are widely used
 - Current-source based
 - Resistor –based
 .. V/R structures
 .. R-2R structures
 .. Switch impedance must be managed in Resistor-Based structures

• Method of switching current significantly affects performance

• Charge Redistribution DACs can be quite energy efficient and can provide good resolution
 - Based upon switched-capacitor concept
R-2R DAC
ADC Types

Nyquist Rate
- Flash
- Pipeline
- Two-Step Flash
- Multi-Step Flash
- Cyclic (algorithmic)
- Successive Approximation
- Folded
- Dual Slope

- Can be very fast
- Moderate resolution

Over-Sampled
- Single-bit
- Multi-bit
- First-order
- Higher-order
- Continuous-time

- Very high resolution (24 bits)
- Slow
Nyquist Rate

One conversion completed each clock period (possible with latency)
Sampling rate limited to Nyquist-rate

\[f_c > 2f_{sig_{max}} \]
Nyquist Rate
Over-sampling ratios of 128:1 or 64:1 are common. Dramatic reduction in quantization noise effects. Limited to relatively low frequencies.
Flash ADC

- Very fast

- Comparators are often clocked

- Input S/H is used

- Clockless comparators often more power efficient

- Offset of comparators is of major concern

- Limited to low resolution, e.g. 4, 5, 6, 7, 8...
Flash ADC

V_{REF} V_{IN}

R R R R

$2^n : n$ Encoder

d_k

X_{OUT}

n

CL
Flash ADC Summary

Flash ADC
Very fast
Usually Clocked
Bubble Removal Important
Seldom over 6 or 7 bits of resolution

Force everything below highest "1" to be a "1"
Clocked Comparator
Clocked Comparator
Pipelined ADC

\[X_{OUT} = n_1 : n_2 : ... : n_m \]
Pipelined ADC
Pipelined ADC Stage k
Pipelined ADC Stage k

X_{IN_k} → ADC_k → DAC_k → A_k → S/H_k → X_{OUT_k}

- Pipeline Stage:
 - n_k
 - d_k
 - V_{REF}
 - C_{LK}

Usually Realized as Single SC Block
Pipelined ADC Stage k

Pipeline Stage

X_{INk}

A_k

S/H_k

X_{OUTk}

Usually Realized as Flash ADC

(often simple comparator if $n_k = 1$)
Pipelined ADC Stage k

Pipeline Stage for 1 bit/stage

X_{IN_k}

X_{OUT_k}

V_{REF}

C_{LK}

V_{IN}

$V_O = \begin{cases}
2V_{IN} + \frac{V_{REF}}{2} & V_{IN} < 0 \\
2V_{IN} - \frac{V_{REF}}{2} & V_{IN} < 0
\end{cases}$
Transfer Characteristics for 1 bit/stage

\[V_O = \begin{cases}
2V_{IN} + \frac{V_{REF}}{2} & \text{if } V_{IN} < 0 \\
2V_{IN} - \frac{V_{REF}}{2} & \text{if } V_{IN} < 0
\end{cases} \]
Consider the following circuit
Consider the following circuit

During Φ_1

During Φ_2
Consider the following circuit

\[Q_1 = C_1 \left(V_{IN} - V^+ \right) \]
\[Q_2 = C_2 \left(V_{IN} - V^+ \right) \]
Consider the following circuit

During Φ_2

During Φ_1
Consider the following circuit

\[
Q_1 = C_1 (V_{\text{IN}} - V^+) \\
Q_2 = C_2 (V_{\text{IN}} - V^+)
\]

During \(\Phi_2 \)

\[
Q_{1T} = C_1 (V_{\text{IN}} - V^+) - C_1 (V_X - V^+) = C_1 (V_{\text{IN}} - V_X)
\]

\[
Q_{2F} = Q_2 + Q_{1T} = C_2 (V_{\text{IN}} - V^+) + C_1 (V_{\text{IN}} - V_X) = (C_1 + C_2) V_{\text{IN}} - C_2 V^+ - C_1 V_X
\]
Consider the following circuit

During Φ_2

\[Q_{2F} = Q_2 + Q_{IT} = C_2 \left(V_{IN} - V^+ \right) + C_1 \left(V_{IN} - V_X \right) = \left(C_1 + C_2 \right) V_{IN} - C_2 V^+ - C_1 V_X \]

\[V_{C2F} = \frac{Q_{2F}}{C_2} = \left(1 + \frac{C_1}{C_2} \right) V_{IN} - V^+ - \frac{C_1}{C_2} V_X \]

\[V_{OUTF} = V_{C2F} + V^+ = \left(1 + \frac{C_1}{C_2} \right) V_{IN} - \frac{C_1}{C_2} V_X \]
Consider the following circuit

\[V_{OUTF} = V_{C2F} + V^+ = \left(1 + \frac{C_1}{C_2}\right)V_{IN} - \frac{C_1}{C_2} V_X \]

If \(C_1 = C_2 = C \) and \(V_X = -\frac{V_{REF}}{2} \)

\[V_{OUTF} = V_{C2F} + V^+ = 2V_{IN} + \frac{V_{REF}}{2} \]
Consider the following circuit

\[
V_{\text{OUTF}} = V_{\text{C2F}} + V^+ = \left(1 + \frac{C_1}{C_2}\right)V_{\text{IN}} - \frac{C_1}{C_2}V_X
\]

If \(C_1 = C_2 = C\) and \(V_X = \frac{V_{\text{REF}}}{2}\)

\[
V_{\text{OUTF}} = V_{\text{C2F}} + V^+ = 2V_{\text{IN}} - \frac{V_{\text{REF}}}{2}
\]
Observe

\[
V_O = \begin{cases}
2V_{IN} + \frac{V_{REF}}{2} & V_{IN} < 0 \\
2V_{IN} - \frac{V_{REF}}{2} & V_{IN} < 0
\end{cases}
\]
Pipelined ADC Stage k

- X_{IN_k}
- ADC_k
- n_k
- d_k
- DAC_k
- A_k
- S/H_k
- X_{OUT_k}
- V_{REF}
- C_{LK}

Usually Realized as Single SC Block
1-bit/Stage Pipeline Implementation

\[
V_O = \begin{cases}
2V_{IN} + \frac{V_{REF}}{2} & V_{IN} < 0 \\
2V_{IN} - \frac{V_{REF}}{2} & V_{IN} < 0
\end{cases}
\]
Pipelined ADC Stage k

Usually Realized as Flash ADC
(often simple comparator if $n_k=1$)
1-bit/Stage Pipeline Implementation

\[V_{INk} \]

\[V_{REF} \quad \xrightarrow{ADC_k} \quad 1 \]

\[d_k \]

\[V_{INk} \quad \xrightarrow{+} \quad d_k \]