EE 435

Lecture 10

Current Mirror Op Amps (wrap up)
Other Gain Enhancement Strategies
- Cascaded Amplifiers
OTA Applications

Review from Last Time

Noninverting Voltage Controlled Amplifier

\[V_{\text{OUT}} = \frac{g_{m1}}{g_{m2}} V_{\text{in}} \]

Inverting Voltage Controlled Amplifier

\[V_{\text{OUT}} = -\frac{g_{m1}}{g_{m2}} V_{\text{in}} \]

Extremely large gain adjustment is possible

Voltage Controlled Resistorless Amplifiers
OTA Applications

Review from Last Time

Noninverting Voltage Controlled Integrator

\[V_{OUT} = \frac{g_m}{sC} V_{in} \]

Inverting Voltage Controlled Integrator

\[V_{OUT} = -\frac{g_m}{sC} V_{in} \]

Voltage Controlled Integrators
Fully Differential Current Mirror Op Amp with Improved Slew Rate

SR \(= \frac{M I_T}{C_L} \)

\(SR_{CMOpAmp} = \frac{M I_T}{2C_L} \)

Improved a factor of 2!

but …

\(P_{CMOpAmp} = V_{DD} I_T (1 + M) \)

\(P = V_{DD} I_T (1 + 2M) \)

SR actually about the same for “improved SR circuit” and basic OTA
Comparison of Current-Mirror Op Amps with Previous Structures

How does the GB power efficiency compare with previous amplifiers?

\[
\text{GB} = \frac{g_{mEQ}}{C_L} = \frac{Mg_{m1}}{2} = \frac{MI_T}{2V_{EB1}C_L}
\]

\[
P = V_{DD} I_T \left(1 + M\right)
\]

GB for Telescopic Cascode and Ref Op Amp!

GB efficiency decreased for small M!!
Current-Mirror Op Amps – Another Perspective!

Differential Half-Circuit
Current-Mirror Op Amps – Another Perspective!

Differential Half-Circuit

Cascade of n-channel common source amplifier with p-channel common-source amplifier!
Current-Mirror Op Amps – Another Perspective!

Differential Half-Circuit

From Current Mirror Analysis:

\[A_v = -\frac{1}{2} \left(\frac{g_{m2}}{g_{m4}} \right) \left(\frac{g_{m6}}{g_{o6} + g_{o8}} \right) \]

\[A_{vo} = -\frac{M \cdot g_{m1}}{2} = -\frac{g_{m6} \cdot g_{m1}}{g_{o6} + g_{o8}} \]

Cascade of n-channel common source amplifier with p-channel common-source amplifier!
Stability

- Sometimes circuits that have been designed to operate as amplifiers do not amplify a signal but rather oscillate when no input signal is present ($V_{in}=0V$ or $I_{in}=0A$) or “latch up”
- Circuits that are designed to operate as amplifiers that oscillate or “latch up” are said to be unstable
- The stability of any circuit is determined by the location of the poles
- We will discuss stability with more rigor later
- It will be shown that if the poles of an open-loop amplifier are widely separated on the negative real axis, then the feedback amplifier built using the open-loop amplifier will be stable
Poles of an Amplifier

• The poles of an amplifier are the roots of the denominator of the transfer function.

• Each energy storage element (capacitor or inductor) introduces an additional pole (except when capacitor or inductor loops exist).

• The poles of an amplifier can often be approximated by independently considering the impedance facing each capacitor and assuming all other capacitors are either open circuits or short circuits.
Current-Mirror Op Amps – Another Perspective!

Differential Half-Circuit

Are there stability issues or concerns?

\[
p_2 \approx -\frac{(g_{o6} + g_{o8})}{C_2}
\]

\[
p_1 \approx -\frac{g_{m4}}{C_1}
\]

\[|p_1| >> |p_2|\]

No stability problems provided \(C_2\) is sufficiently large!
Current Mirror Op Amp Summary

• Current-mirror op amp offers no improvement in performance over the reference op amp
• Current-mirror op amp can be viewed as a cascade of two common-source amplifiers, one with a low gain and the other with a larger gain
• Current-mirror op amp is useful as an open-loop programmable transconductance amplifier (OTA)
Other Methods of Gain Enhancement

The current mirror op amp is actually a cascade of two amplifiers but did not give a real improvement in gain.

Provided the stages are non-interacting

\[
\frac{X_{\text{OUT}}}{X_{\text{IN}}} = A = A_1A_2
\]

For the current mirror op amp

\[
A_1 \ll A_2
\]

Could the gain be increased by cascading two or more amplifiers if the amplifiers had a higher gain?
Increasing Gain by Cascading

Provided the stages are non-interacting

\[\frac{X_{\text{OUT}}}{X_{\text{IN}}} = A_1A_2 \]

\[\frac{X_{\text{OUT}}}{X_{\text{IN}}} = A_1A_2A_3 \]

\[\frac{X_{\text{OUT}}}{X_{\text{IN}}} = \prod_{i=1}^{n} A_i \]

Gain can be easily increased to almost any desired level!
Increasing Gain by Cascading

\[\frac{X_{\text{OUT}}}{X_{\text{IN}}} = \prod_{i=1}^{n} A_i \]

But each of the gains will roll off with frequency so can be modeled as

\[A_k(s) = \frac{A_{0k}}{s + \tilde{p}_k} \]

A\(_{0k}\) is the dc gain of stage \(k \)
\(\tilde{p}_k \) is the negative of the pole of stage \(k \)

Thus

\[\frac{X_{\text{OUT}}}{X_{\text{IN}}} = A = \frac{\prod_{i=1}^{n} A_{0i}}{\prod_{k=1}^{n} \left(\frac{s}{\tilde{p}_k} + 1 \right)} \]
Increasing Gain by Cascading

\[\frac{X_{\text{OUT}}}{X_{\text{IN}}} = A = \prod_{i=1}^{n} \frac{A_{0i}}{s + \tilde{p}_k} + 1 \]

Assume for case of an example that all stages are identical with \(A_{0k} = A_0 \) and \(\tilde{p}_k = \tilde{p} = -p \)

- Much larger gain
- Much steeper gain transition
- Much more phase shift
Increasing Gain by Cascading

\[\frac{X_{\text{OUT}}}{X_{\text{IN}}} = A = \frac{\prod_{i=1}^{n} A_{0i}}{\prod_{k=1}^{n} \left(\frac{s}{p_k} + 1 \right)} \]

Dramatic improvement in performance for the open-loop amplifier!!

But – op amps seldom used open loop

How does the cascaded amplifier perform in a feedback application?

\[A_{\text{FB}} = \frac{A}{1 + A \beta} \]
Feedback Amplifier Representation

\[
\frac{V_{\text{OUT}}}{V_{\text{IN}}} = \frac{1 + \frac{R_2}{R_1}}{1 + \left(1 + \frac{R_2}{R_1}\right)A}
\]

\[
\beta = \frac{R_1}{R_1 + R_2}
\]

\[
A_{\text{FB}} = \frac{A}{1 + A\beta} = \frac{\beta^{-1}}{1 + \frac{\beta^{-1}}{A}} = \frac{1 + \frac{R_2}{R_1}}{1 + \left(1 + \frac{R_2}{R_1}\right)A}
\]
Frequency Response of Feedback Amplifier

Consider the special case where A is the cascade of n identical stages

\[
\frac{X_{\text{OUT}}}{X_1} = A = \left(\prod_{k=1}^{n} \frac{s}{\beta_k} + 1 \right) = \left(\frac{s}{\beta + 1} \right)^n
\]

\[
A_{\text{FB}} = \frac{A}{1 + A \beta} = \frac{A_0^n}{\left(\frac{s}{\beta} + 1 \right)^n + \beta A_0^n}
\]

How do we determine how the amplifier is performing from A_{FB}?
Review of Basic Concepts

If \(T(s) = \frac{N(s)}{D(s)} \) is the transfer function of a linear system,

Roots of \(N(s) \) are termed the zeros,

Roots of \(D(s) \) are termed the poles.

\(X \) denotes poles
\(O \) denotes zeros
Review of Basic Concepts

If \(T(s) \) is the transfer function of a linear system

\[
T(s) = \frac{N(s)}{D(s)}
\]
is the transfer function of a linear system

Roots of \(N(s) \) are termed the zeros

Roots of \(D(s) \) are termed the poles

Theorem: A linear system is stable iff all poles lie in the open left half-plane

Claim: A circuit that is not stable is not a useful amplifier
Claim: A circuit that is close to becoming unstable is not a useful amplifier
Theorem: A linear system is stable iff all poles lie in the open left half-plane.

Stable with two negative real axis poles and two LHP CC poles.

Unstable with positive real axis pole.
Theorem: A linear system is stable iff all poles lie in the open left half-plane.

Stable with negative real axis poles

Unstable with cc RHP poles
Review of Basic Concepts

Theorem: A linear system is stable iff all poles lie in the open left half-plane.

Stable with negative real-axis poles and RHP zero.
System zero locations do not have any impact on stability.
Review of Basic Concepts

Theorem: A linear system is stable iff all poles lie in the open left half-plane

Close to becoming unstable since poles are close to the RHP
Review of Basic Concepts

\[
\begin{align*}
X_{\text{IN}} & \quad T(s) \quad X_{\text{OUT}} \\
\end{align*}
\]

\[
T(s) = \frac{N(s)}{D(s)}
\]

Theorem: A linear system is stable iff all poles lie in the open left half-plane.

What are the practical implications of stability and “close to becoming unstable”?

For any input to a linear system, the response can be written as

\[
X_{\text{OUT}}(s) = X_{\text{IN}}(s)T(s) = \sum_{k=1}^{n} \frac{a_k}{s + \tilde{p}_k} + \sum_{k=1}^{h} \frac{b_k}{s + \tilde{x}_k}
\]

where the terms \(\tilde{p}_k \) are the negative of the poles of \(T(s) \), the terms \(\tilde{x}_k \) are the negative of the roots of the denominator of the excitation and the terms \(a_k \) and \(b_k \) are the partial fraction expansion coefficients.

If \(\tilde{p}_k \) is the negative of any pole, then \(\tilde{p}_k \) can be expressed as

\[
\tilde{p}_k = -\alpha_k - j\beta_k
\]

where \(\alpha_k \) is the real part of the pole and \(\beta_k \) is the imaginary part of the pole.

\[
p_k = -\tilde{p}_k
\]
Review of Basic Concepts

\[
T(s) = \frac{N(s)}{D(s)}
\]

\[X_{IN} \quad T(s) \quad X_{OUT}\]

Theorem: A linear system is stable iff all poles lie in the open left half-plane.

What are the practical implications of stability and “close to becoming unstable”?

It thus follows that

\[
X_{OUT}(t) = \mathcal{L}^{-1}(X_{IN}(s)T(s)) = \sum_{k=1}^{n} a_k e^{a_k t} e^{j \beta_k t} + \sum_{k=1}^{h} b_k e^{-j \alpha_k t}
\]

Thus, for the output to be bounded for ANY input, must have ALL \(\alpha_k < 0 \)

That is equivalent to saying all poles must lie in the left half-plane.

If a pole is in the RHP, output for any input (even very small noise) will grow to infinity. If the corresponding \(\beta_k = 0 \), output will latch up. If corresponding \(\beta_k \neq 0 \), output will be a growing sinusoid.
Consider Again the Frequency Response of a Feedback Amplifier

\[A_{FB} = \frac{A_n}{(s + \frac{1}{\beta}) + \beta A_n} \]

Example: Assume \(n=3 \)

\[A_{FB} = \frac{A}{1 + A\beta} = \frac{A_0^3}{(s + \frac{1}{\beta})^3 + \beta A_0^3} \]

The poles with feedback, \(p_F \), are given by

\[p_F = \left((-1)^{\frac{1}{3}} \beta^{\frac{1}{3}} A_0 - 1 \right) \tilde{p} \approx (-1)^{\frac{1}{3}} \beta^{\frac{1}{3}} A_0 \tilde{p} \]

Note this amplifier is unstable !!!
End of Lecture 10