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Lecture 13

Cascaded Amplifiers

-- Two-Stage Op Amp Design



Increasing Gain by Cascading
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Provided the stages are non-interacting

Gain can be easily 

increased to almost 

any desired level !

Review from Last Time



Increasing Gain by Cascading
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But each of the gains will roll off with frequency so can be modeled as

A0k is the dc gain of stage k

is the negative of the pole of stage k

Thus
kp~

Review from Last Time



Frequency Response of Feedback Amplifier 
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Consider the special case where A is the cascade of n identical stages
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How do we determine how the amplifier is performing from AFB?

Review from Last Time



Review of Basic Concepts

If
D(s)

N(s)
T(s)  is the transfer function of a linear system

T(s)
XIN XOUT

Roots of N(s) are termed the zeros

Roots of D(s) are termed the poles
Im

Re

Open Left Half Plane

X denotes poles

O denotes zeros



Review of Basic Concepts

If
D(s)

N(s)
T(s)  is the transfer function of a linear system

T(s)
XIN XOUT

Roots of N(s) are termed the zeros

Roots of D(s) are termed the poles

Theorem:   A linear system is stable iff all poles lie in the open left half-plane

Claim:   If a circuit is unstable, the output will either diverge to infinity or oscillate 

even if the input is set to 0

Claim:  A circuit that is not stable is not a useful amplifier

Claim:  A circuit that is “close” to becoming unstable is not a useful amplifier



Review of Basic Concepts

Theorem:   A linear system is stable iff all poles lie in the open left half-plane

Im

Re

Open Left Half Plane
Im

Re

Open Left Half Plane

Stable with two negative

real axis poles and two LHP CC poles

Unstable with positive real 

axis pole



Review of Basic Concepts

Theorem:   A linear system is stable iff all poles lie in the open left half-plane

Im

Re

Open Left Half Plane Im

Re

Open Left Half Plane

Stable with negative real axis poles Unstable with cc RHP poles



Review of Basic Concepts

Theorem:   A linear system is stable iff all poles lie in the open left half-plane

Im

Re

Open Left Half Plane

Stable with negative real-axis poles and RHP zero

System zero locations of have no impact on stability



Review of Basic Concepts

Theorem:   A linear system is stable iff all poles lie in the open left half-plane

Im

Re

Open Left Half Plane

Close to becoming unstable since poles are close to the RHP



Review of Basic Concepts

D(s)

N(s)
T(s) T(s)

XIN XOUT

Theorem:   A linear system is stable iff all poles lie in the open left half-plane

What are the practical implications of stability and “close to becoming unstable” ?

For any input to a linear system, the response can be written as
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where α is the real part of the pole and β is the imaginary part of the pole

  

where the terms    are the negative of the poles of T(s), the terms      are the 

negative of the roots of the denominator of the excitation and the terms ak

and bk are the partial fraction expansion coefficients

kp~
kx~

If      is the negative of any pole, then     can be expressed as  kp kp~

k kjk kp =-p   



Review of Basic Concepts

D(s)

N(s)
T(s) T(s)

XIN XOUT

Theorem:   A linear system is stable iff all poles lie in the open left half-plane

What are the practical implications of stability and “close to becoming unstable” ?

It thus follows that 
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Thus, for the output to be bounded for ANY input, must have ALL 0αk 

That is equivalent to saying all poles must lie in the left half-plane

If a pole is in the RHP, output for any input (even very small noise) will grow 

to infinity.  If the corresponding βk=0, output will latch up.  If corresponding 

βk ≠ 0, output will be a growing sinusoid



Consider Again the Frequency Response of a Feedback Amplifier with 

identical gain stages 
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Example:  Assume n=3 
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Note this amplifier is unstable !!!
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The poles with feedback, pF, are given by



Consider Again the Frequency Response of Feedback Amplifier 

A

β

X
IN

X
OUTX

1

Example:  If n=3 and stages are identical 
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Routh-Hurwitz Stability Criteria:

A third-order polynomial s3+a2s
2+a1s+a0  has all poles in the LHP iff all 

coefficients are positive and  a1a2>a0

Consider  3
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Not only is the 3-stage amplifier unstable, it is far from being stable!

For stability
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Routh-Hurwitz Stability Criteria:

A third-order polynomial s3+a2s
2+a1s+a0  has all poles in 

the LHP iff all coefficients are positive and  a1a2>a0

• Very useful in amplifier and filter design

• Can easily determine if poles in LHP without finding poles

• But tells little about how far in LHP poles may be

• RH exists for higher-order polynomials as well 



Example:

Assume an amplifier has a transfer function that has a denominator 

polynomial that can be expressed as 

D(s)=s3+2ks2+4s+16

Determine the minimum value of k that will result in a stable amplifier 



Solution:

Assume an amplifier has a transfer function that has a denominator 

polynomial that can be expressed as 

D(s)=s3+2ks2+4s+16

Determine the minimum value of k that will result in a stable amplifier

Solution:   Recall from the RH criteria that all roots of a third-order polynomial

of the form s3+a2s
2+a1s+a0 will lie in the LHP provided all coefficients are 

positive and  a1a2 > a0

Thus, for the current problem, must have

(2k)4 >16

or

k>2



Consider Again the Frequency Response of the basic Feedback Amplifier 
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Example:  If n=3 and stages are not identical 
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Consider Again the Frequency Response of Feedback Amplifier 
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Example:  If n=3 and stages are not identical (cont) 

Routh-Hurwitz Stability Criteria:
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WOLG, assume 321 ppp ~~~  and define 133122 pkpandpkp ~~~~ 

Thus the RH criteria can be expressed as
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Consider Again the Frequency Response of Feedback Amplifier (cont)
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Example:  If n=3 and stages are not identical 

RH criteria: 

   0 T O T323232 β Akkkkkk1 

Since A0TOT will, in general, be very large for the cascade of 3 stages, a very 

large pole ratio is required just to maintain stability and an even larger ratio 

needed to avoid a close to becoming unstable situation

Practically it is difficult to obtain such a large spread in the bandwidth of the 

amplifiers

For many years there was limited commercial use of the cascade of three 

amplifiers (each with gain)  in the design of op amps though some academic 

groups have worked on this approach with minimal practical success

Problem can be viewed as one of accumulating too much phase shift before 

gain drops to an acceptable value

In recent years, industry is looking at ways to “compensate” amplifiers to work 

with 3 (or more) high gain stages due to low headroom and shrinking gm/go ratios



Similar implications on inverting amplifier even if 

not a basic voltage feedback amplifier

VOUTVIN

V1

R1

R2

AV

VOUT

VIN

V1

R1

R2

AV

A

β

VOUT
VIN

1

2

OUT 1
VF

IN 2

V 1

R
1+

V R
A  =  = 

V R
1+ 1+

A R

 
 
 

OUT V
VF

IN V

V A
A  =  = 

V 1+βA

1

2

OUT 1
VF

IN 2

V 1

R
-

V R
A  =  = 

V R
1+ 1+

A R

 
 
 

A

β

VOUT
VIN

OUT V
VF

IN V

V A
A  =  = 

V 1+βA

1

2 1

R
β = 

R +R
1

2 1

R
β = 

R +R



Similar implications on inverting amplifier even if 

not a basic voltage feedback amplifier
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These circuits have

• same β

• same dead network

• same characteristic polynomial

• same poles

• different zeros

 D s =1+Aβ (expressed as polynomial)



Example:   Determine the dc open-loop gain, dc closed-loop gain, the  

open-loop poles, the  open-loop zeros, the closed-loop poles, the closed-

loop zeros, and the characteristic polynomial if
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Example:   Determine the dc open-loop gain, dc closed-loop gain, the  

open-loop poles, the  open-loop zeros, the closed-loop poles, the closed-

loop zeros, and the characteristic polynomial if
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7 s+1
A s =10

s+10 s+1000

AOL=

Open-loop zeros =

Open-loop poles =



Example:   Determine the dc open-loop gain, dc closed-loop gain, the  

open-loop poles, the  open-loop zeros, the closed-loop poles, the closed-

loop zeros, and the characteristic polynomial if

VOUTVIN

V1

R1

R2

AV

1

2

OUT 1
VF

IN 2

V 1

R
-

V R
A  =  = 

V R
1+ 1+

A R

 
 
 

 
  

7 s+1
A s =10

s+10 s+1000

  

 

2

OUT 1
VF

IN
7

R
-

V R
A  =  = 

s+10 s+1000V
1+

10 β s+1

 

    

72

OUT 1
VF 7

IN

R
- 10 β s+1

V R
A  =  = 

V s+1 10 β + s+10 s+1000

1

2 1

R
β = 

R +R



Example:   Determine the dc open-loop gain, dc closed-loop gain, the  

open-loop poles, the  open-loop zeros, the closed-loop poles, the closed-

loop zeros, and the characteristic polynomial if
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In integer-monic form:

AOF=
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Cascaded Amplifier Issues

Three amplifier cascades  - for ideally identical stages 3

0βA8 

Four or more amplifier cascades  - problems even larger than for three stages 

-- seldom used in industry though some recent products use this method !

-- invariably modify A

-- seldom used in industry !
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For first-order lowpass stage gains  



Consider Again the Frequency Response of Feedback Amplifier 
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Consider cascade of two stages, i.e.  n=2 

Note this amplifier is stable !!!!

(at least based upon this analysis) 

If we assume 1212 pkp     express thus and  pp ~~~~ 

The characteristic polynomial can be expressed as
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Two-stage Cascade (continued)  

Consider special case of identical stages (i.e. k=1)
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thus the poles of the feedback amplifier are located at
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• FB poles are very close to the imaginary axis

• Very highly under damped

• Not useful as an amplifier (excessive ringing)

• Other poles will make it unstable
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Two-stage Cascade (continued)  

Thus, must make k >> 1 if there is any potential for the two-stage cascade 
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thus the poles of the feedback amplifier are located at

Case 1:  No complex conjugate poles;  must make discriminate 0, thus
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Two equal FB poles on real axis will provide maximally fast time-domain response w/o ringing
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Two-stage Cascade (continued)  
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Case 2:  Maximally flat magnitude response;  must make real and imaginary

parts equal 
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• Small ringing in step response

• Factor of 2 reduction in pole spread
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Two-stage Cascade (continued)  
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The pole spread for maximal frequency domain flatness or fast non-ringing time 

domain response is quite large for the two-stage amplifier but can be achieved

Usually will make angle of feedback poles with imaginary axis between 45o and 

90o

This results (for all-pole cascade) in an open loop pole spread that satisfies the 

relationship
0TOT0TOT A2βkA4β 

“Compensation” is the modification of the pole locations of an amplifier to 

achieve a desired closed-loop pole angle
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Cascaded Amplifier Issues

Four or more amplifier cascades  - problems even larger than for three stages 

-- seldom used in industry but starting to appear !

-- seldom used in industry !

Two amplifier cascades  0TOT0TOT A2βkA4β 

-- widely used in industry but compensation is essential !

Three amplifier cascades  - for ideally identical stages 3

0βA8 

Single-stage amplifiers   

-- widely used in industry, little or no concern about compensation

Note:  Some amplifiers that are termed single-stage amplifiers in many books and papers are 

actually two-stage amplifiers and some require modest compensation.  Some that are termed two-

stage amplifiers are actually three-stage amplifiers.  These invariable have a very small gain on the 

first stage and a very large bandwidth.  The nomenclature on this summary refers to the number of 

stages that have reasonably large gain.   Results given above vary somewhat if a zero is present in 

the amplifier.
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Summary of Cascaded Amplifier Characteristics 

A cascade of amplifiers can result in a very high dc gain !

Characteristics of feedback amplifier (where the op amp is applied) are of 

ultimate concern

Some critical and fundamental issues came up with even the most basic 

cascades when  they are used in a feedback configuration

Must understand how open-loop and closed-loop amplifier performance 

relate before proceeding to design amplifiers by cascading



Summary of Amplifier Characteristics

An amplifier is stable iff all poles lie in the open LHP

Routh-Hurwitz Criteria is often a practical way to determine if an amplifier 

is stable

Although stability of an amplifier is critical, a good amplifier must not only 

be stable but generally must satisfy  magnitude peaking and/or settling 

requirements thus poles need to be moved a reasonable distance from the 

imaginary axis

The cascade of three identical high-gain amplifiers will result in a pole-pair 

far in the right half plane when feedback is applied  so FB amplifier will be 

unstable
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For stability
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End of Lecture 13



• Fundamental Amplifier Design Issues

• Single-Stage Low Gain Op Amps

• Single-Stage High Gain Op  Amps

• Two-Stage Op Amp
– Compensation 

– Breaking the Loop

• Other Basic Gain Enhancement Approaches

• Other Issues in Amplifier Design

• Summary Remarks



Two-stage op amp design

It is essential to know where the poles of the op 

amp are located since there are some rather strict 

requirements about the relative location of the open-

loop poles when the op amp is used in a feedback 

configuration.



Poles and Zeros of Amplifiers
VDD

M1 M2

VB2

M3 M4

VIN
VIN
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CL

M10

VOUT

C1

C2

C3 C4

C5
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C7 C8

• There are a large number of parasitic capacitors in an amplifier
(appprox 5 for each transistor)

• Many will appear in parallel but the number of equivalent capacitors can still be large

• Order of transfer function is equal to the number of non-degenerate energy storage 

elements

• Obtaining the transfer function of a high-order network is a lot of work !

• Essentially every node in an amplifier has a capacitor to ground and these often

dominate the frequency response of the amplifier (but not always)

Cascaded Amplifier showing some of the capacitors



Pole approximation methods
1. Consider all shunt capacitors

2. Decompose these into two sets, those that create low frequency poles 

and those that create high frequency poles (large capacitors create low

frequency poles and small capacitors create high frequency poles)

{CL1, … CLk}   and    {CH1, … CHm}

3. To find the k low frequency poles, replace all independent voltage sources with

ss shorts and all independent current sources with ss opens, all high-frequency 

capacitors  with   ss open circuits and, one at a time, select CLh and determine 

the impedance  facing it, say RLh  if all other low-frequency capacitors are replaced 

with ss open circuits.   Then an approximation for the pole corresponding to 

CLh is

pLh=-1/(RLhCLh)

4.   To find the m high-frequency poles, replace all independent voltage sources with

ss shorts and all independent current sources with ss opens, replace all low-frequency 

capacitors with ss short circuits and, one at a time, select CHh and determine the 

impedance facing it, say RHh if all other high-frequency capacitors are replaced with ss

open circuits.  Then the approximation for the pole corresponding to CHh is

pHh=-1/(RHhCHh)



Pole approximation methods

These are just pole approximations but are often quite good

Provides closed-form analytical expressions for poles in terms of 

components of the network that can be managed during design

Provides considerable insight into what is affecting the frequency response

of the amplifier

Pole approximation methods give no information about zero locations

Many authors refer to the “pole on a node” and this notation comes from

the pole approximation method discussed on previous slide



Example:  Obtain the approximations to the 

poles of the following circuit

R1=1K R2=5K

C1=100pF C2=200pF

VIN

VOUT

Since C1 and C2 and small, have two high-frequency poles

{C1, C2}



R1=1K R2=5K

C2=200pF

R1=1K R2=5K

C1=100pF C2=200pF

VIN

VOUT

R1=1K R2=5K

C1=100pF

 H2
2 1 2

1
p  = - 

C R +R

H1
1 1

1
p  = - 

C  R

H2p  = - 833Krad/sec

H1p  = -10M rad/sec



R1=1K R2=5K

C1=100pF C2=200pF

VIN

VOUT

H2p  = - 821Krad/sec

H1p  = -12.2M rad/sec

In this case, an exact solution is possible

  1 2 1 2

2

1 1 2 2 2 1 1 2 1 2

1

R R C C

1 1 1 1
s + + + s+

R C R C R C R R C C

T s 
 
 
 

(1.4% error)

(18% error)



Basic Two-Stage Cascade

F
1

P
1

V
IN

F
2

P
2

V
OUT

• Simple Concept 

• Must decide what to use for the two quarter circuits

Can be extended to fully differential on first or second stage



Compensation of Basic Two-Stage Cascade

F
1

P
1

V
IN

F
2

P
2

V
OUT

C
1

• Modest variants of the compensation principle are often used

• Internally compensated creates the dominant pole on the internal node

• Output compensated created the dominant pole on the external node 

• Output compensated often termed “self-compensated”

F
1

P
1

V
IN

F
2

P
2

V
OUT

C
2

Internally Compensated Output Compensated

Everything else is just details !!



Two-stage Architectural Choices

Common 

Source
Cascode
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Tail Voltage Tail Current
Stage 1
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Current 
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Single 

Ended Input
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Two-stage Architectural Choices

Output Compensated Internally Compensated

6

2

2

6

2

2

2

Plus n-channel or p-channel on each stage 4

2304 Choices !!!
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Ended Input
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Tail Voltage Tail CurrentTail Voltage Tail Current
Stage 2



Two-stage Architectural Choices

Which of these 2304 choices can be used to build a good op amp?

All of them !!

Output Compensated Internally Compensated

Plus n-channel or p-channel on each stage
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Stage 2



Two-stage Architectural Choices

There are actually a few additional variants so the number 

of choices is larger

Basic analysis of all is about the same and can be 

obtained from the quarter circuit of each stage

A very small number of these are actually used

Some rules can be established that provide guidance as 

to which structure may be most useful in a given 

application



Two-stage Architectural Choices

Guidelines for Architectural Choices

Tail current source usually used in first stage, tail voltage source in second 

stage

Large gain usually used in first stage, smaller gain in second stage

First and second stage usually use quarter circuits of opposite types (n-p 

or p-n)

Input common mode input range of concern on first stage but output swing 

of first stage of reduced concern.  Output range on second stage of 

concern.

CMRR of first stage of concern but not of second stage

Noise on first stage of concern but not of much concern on second stage



Two-stage Architectural Choices

Output Compensated Internally Compensated

Plus n-channel or p-channel on each stage
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Basic Two-Stage Op Amp



Two-stage Architectural Choices
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Plus n-channel or p-channel on each stage
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Cascode-Cascade Two-Stage Op Amp



Two-stage Architectural Choices

Output Compensated Internally Compensated

Plus n-channel or p-channel on each stage
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Folded Cascode-Cascade Two-Stage Op Amp



Basic Two-Stage Op Amp
V

DD

V
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C
C

o One of the most widely used op amp architectures

o Essentially just a cascade of two common-source stages

o Compensation Capacitor CC used to get wide pole separation

o Two poles in amplifier

o No universally accepted strategy for designing this seemingly

simple amplifier

Pole spread                   makes CC unacceptably large0 20 1 AβA



Example:
Sketch the circuit of a two-stage internally compensated op amp with a 

telescopic cascode first stage, single-ended output, tail current bias first 

stage, tail voltage bias second stage, p-channel inputs and n-channel 

inputs on the second stage.  



Two-stage Architectural Choices

Common

Source
Cascode

Regulated

Cascode

Folded

Cascode

Folded

Regulated

Cascode

Current

Mirror

Differential Input Single-Ended Input

Differential Output Single-Ended Output

Tail Voltage Bias Tail Current Bias
Stage 1

Internally Compensated Output Compensated

Common

Source
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Regulated
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Folded

Cascode

Folded

Regulated

Cascode

Current

Mirror

Differential Input Single-Ended Input

Differential Output Single-Ended Output

Tail Voltage Bias Tail Current Bias
Stage 2

p-channel Input n-channel Input

Cascode-Cascade Two-Stage Op Amp



Example  Solution

CC

VOUT

VIN
VIN

VDD

VX3

VX4 VX5



K2-W  Op Amp by Philbrickk,  1952-1971

First Commercial Operational Amplifier



“Widlar began his career at Fairchild semiconductor, where he designed a 

couple of pioneering op amps. By 1966, the commercial success of his 

designs became apparent, and Widlar asked for a raise. He was turned down, 

and jumped ship to the fledgling National Semiconductor. At National he 

continued to turn out amazing designs, and was able to retire just before his 

30th birthday in 1970.” 

Inventor of the Two-Stage Op Amp

Robert Widlar

Many say he started the field of analog IC design, considered a brilliant engineer

(from posted www site)



Inventor of the internally-compensated  Op Amp

Dave Fullagar

• Designed the first internally-compensate op amp, the 741

• Fullagar was 26 years old when this was designed (introduced?)

• Introduced in 1968

• Largest selling integrated circuit ever

• Still in high-volume production even though over 40 years old

• Fullagar later started the linear design activities at Intersil

• Cofounder (catalyst)  of Maxim

(from posted www site)



Analysis of Internally Compensated Two-

Stage Op Amps

F
1

P
1

V
IN

F
2

P
2

V
OUT

C
C

C
L

Can’t get everything but can get most of the small-signal results

Consider single-ended input-output (differential analysis only slightly different)

Since internally compensated,  must have p1<<p2



Analysis of Internally Compensated Two-

Stage Op Amps

|p1| |p2|

ω

A0

  0

1 2

A
A s  = 

s s
+1 +1

 p  p

  
  
  

For |p1| << |p2|

BW ≈ |p1|



Analysis of Internally Compensated Two-

Stage Op Amps

goF1gMF1V1V1

CC
goF2gMF2V2V2

CL

goP2gMP2V4V4
goP1gMP1V3V3

VIN

VOUT



Analysis of Internally Compensated Two-

Stage Op Amps
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Analysis of Externally Compensated Two-

Stage Op Amps

F
1

P
1

V
IN

F
2

P
2

V
OUT

C
1

C
C

Can’t get everything but can get most of the small-signal results



Analysis of Externally Compensated Two-

Stage Op Amps

goF1gMF1V1V1

C1
goF2gMF2V2V2

CC

goP2gMP2V4V4
goP1gMP1V3V3

VIN

VOUT



Analysis of Externally Compensated Two-

Stage Op Amps
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Consider Again the Internally Compensated Two-Stage Op Amp

F
1

P
1

V
IN

F
2

P
2

V
OUT

C
C

C
L

0TOT0TOT A2βkA4β 

Since the pole ratio needs to be very large, CC gets very large !
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Recall very crude compensation requirements:

where

Thus, very approximately, 



Miller Capacitance - Review

If V2= -AV1    then for A large

  C
A

1
1CCCAA1CC 2EQ1EQ 










Thus, a large effective capacitance can be created with a much smaller 

capacitor if a capacitor bridges two nodes with a large inverting gain  !!

V1 V2

C

C1EQ C2EQ



Miller Capacitance - Review

If V2= -AV1    then for A large

  C
A

1
1CCCAA1CC 2EQ1EQ 










• If A changes with frequency, C1EQ and C2EQ are no longer pure capacitors

• More useful for giving a concept than for accurate actual analysis because of 

frequency dependence of A

V1 V2C1EQ C2EQ
V1 V2

C

C1EQ C2EQ



Miller Capacitance - Review

ZIN =?

C

-A

The Basic Concept – from capacitance multiplication

C

-A
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VX

   X x X XI = V -(-AV ) sC = V s C 1+A  
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 
X
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V 1
Z =

I s C 1+A
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So, if A is constant, input looks like

a capacitor of value

 EQC =C 1+A



Miller Capacitance - Review
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Does not behave as a capacitor for ω > p



Internal Miller-Compensated Two-Stage Op Amp
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Standard Compensation Miller Compensation
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CEFF

Compensation capacitance reduced by approximately the 

gain of the second stage!

Since the gain of the second stage is not constant, however, 

a new analysis is needed
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Analysis of Internally Miller-Compensated Two-Stage Op Amps
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Analysis of Internally Miller-Compensated Two-Stage Op Amps
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Analysis of Internally Miller-Compensated Two-Stage Op Amps

g
oF1g

MF1
V

1
V

1

C
C

g
oF2g

MF2
V

2
V

2

C
L

g
oP2

g
oP1

V
IN

V
OUT

To find the high-frequency pole 

p2, the circuit has changed
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Note the F2 block is now “diode connected” at high frequencies



Analysis of Internally Miller-Compensated Two-Stage Op Amps
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Has the GB decreased?

No, because the CC decreased by the same factor!



Basic Two-Stage Op Amp
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o One of the most widely used op amp architectures

o Essentially just a cascade of two common-source stages

o Compensation Capacitor CC used to get wide pole separation

o Two poles in amplifier

o No universally accepted strategy for designing this seemingly

simple amplifier

Pole spread                   makes CC unacceptably large0 20 1 AβA



Basic Two-Stage Op Amp (with Miller Compensation)

o Reduces CC by approximately A02

o Pole spread                     makes size of CC manageable 0 20 1 AβA
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Basic Two-Stage Miller Compensated Op Amp
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By inspection
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Will also get these results from a more complete (and time consuming) analysis

This analysis was based only upon finding the poles and will miss zeros if they exist



End of Lecture 13


