EE 435

Lecture 34

DAC Design

string DACs
R-String DAC

Basic R-String DAC
R-String DAC

- R-String DAC with MOS switches

Possible Limitations:

- Switch impedance is not 0
- Switch may not even turn on at all if V_{REF} is large
- Switch impedance is input-code dependent
- Time constants are input-code dependent
- Transition times are previous-code dependent
- C_L has 2^n diffusion capacitances so can get very large
 - Mismatch of resistors
 - local random variation
 - gradient effects
 - Decoder can get very large for n large
- Routing of the $2n$ switch signals can become very long and consume lots of area
R-String DAC

Review from last lecture...
R-String DAC

X_{IN}

$n = n_1:n_2$

V_{RFF}

V_{OUT}

Review from last lecture.
R-String DAC

Sometimes termed sub-divider, sub-range or dual-string DAC
R-String DAC

\[n = n_1:n_2 \]

\[V_{RFF} \]

\[V_{OUT} \]
R-String DAC

\[n = n_1 : n_2 \]

\[V_{RFF} \]

\[X_{IN} \]

\[V_{OUT} \]

Interpolator
R-String DAC

\[X_{IN} \]

\[n = n_1 : n_2 \]

\[V_{RFF} \]

Interpolator

\[V_{OUT} \]
R-String DAC

\[V_{REF} \]

MSB Row Decoder

LSB Analog MUX

\[V_{OUT} \]
R-String DAC

Note Dual Ladder is used!

A 10-b 50-MHz CMOS D/A converter with 75-Ω buffer - Get It@ISU
Abstract - A 10-b 50-MHz digital-to-analog (D/A) converter is presented which is based on a dual-ladder resistor string. This approach allows the linearity requirements to be met without the need for selection or trimming. The D/A ...
Cited by 45 - Related articles - Web Search - All 2 versions
A 10-b 50-MHz CMOS D/A converter with 75-Ω buffer

Abstract — A 10-b 50-MHz digital-to-analog (D/A) converter is presented which is based on a dual-ladder resistor string. This approach allows the linearity requirements to be met without the need for selection or trimming. The D/A decoding scheme reduces the glitch energy, and signal-dependent switch signals reduce high-frequency distortion. The output buffer allows driving 1 Vpp to 75 Ω. The chip consumes 65 mW at maximum clock frequency and a full-swing output signal. The device is processed in a standard 1.6-μm CMOS process with a single 5-V supply voltage.

Current-based circuits dump the complementary part of the signal current to ground: the power supply current is thereby twice the average signal current. If a two-sided terminated transmission line has to be fed by the high-impedance output of the current cell D/A converter, the current should be doubled to obtain the required output swing. In this case, the power supply current is four times the average signal current. A triple video D/A converter

Cited by 51 (4/5/10)
Current-based circuits dump the complementary part of the signal current to ground: the power supply current is thereby twice the average signal current. If a two-sided terminated transmission line has to be fed by the high-impedance output of the current cell D/A converter, the current should be doubled to obtain the required output swing. In this case, the power supply current is four times the average signal current. A triple video D/A converter intended for supplying 1 V_{pp} to 75 Ω will consequently require 80-mA power supply current.

This paper proposes a trimless 10-b 50-MHz D/A converter based on resistor strings. This D/A converter is well suited to be used together with nearly all reported A/D converters for high speed, as these also use resistor strings to obtain the reference for the comparators. The design improves on the standard single-resistor-string approach by using a dual-ladder architecture [3] in a matrix formation [4], [5]. Several measures have been taken in the ladder to reduce the distortion. The decoding aims at minimizing the number of transistors that switch. The on-chip output buffer allows driving 1 V_{pp} to 75 Ω. The inherent voltage output allows driving a two-sided terminated transmission line with a better power efficiency than a current cell D/A converter.

Section II presents the design considerations and chip architecture and Section III shows some measurements on the device. The work is summarized in Section IV.
II. THE CHIP DESIGN

A. The Ladder Structure

The voltage dependence and the mutual matching of large-area polysilicon resistors allow the design of a converter with high integral and differential linearity. Basically, the variation in the polysilicon resistance value is determined by its geometry variations: the length and width variations result in local mismatches and the thickness variation gives gradients. Equally sized MOS gates suffer in addition to charge variations in the threshold voltage. However, the design of the D/A converter with a single 1024-tap resistor ladder and sufficiently fast output settling requires tap resistors in the order of 6–10 Ω. The size of such resistors in conventional polysilicon technology is such that accurate resistor matching and consequently linearity become a problem.
The solution to this problem is the combination of a dual ladder [3] with a matrix organization. Fig. 1 shows the ladder structure. The coarse ladder consists of two ladders each with 16 large-area resistors of 250 Ω which are connected anti-parallel to eliminate the first-order resistivity gradient. The coarse ladder determines 16 accurate tap voltages and is responsible for the integral linearity. A 1024-resistor fine ladder is arranged in a 32-by-32 matrix, where every 64th tap is connected to the coarse-ladder taps. This arrangement allows the fine-ladder tap resistance to be increased to 75 Ω without loss of speed. The effect of wiring resistances has to be related to the 75-Ω tap resistors and can therefore be neglected. There are only currents in the connections between the ladders in the case of ladder inequalities: this reduces the effect of contact resistance variance. The current density in the polysilicon is kept constant to avoid field-dependent nonlinearities. The coarse ladder is designed with polysilicon resistors in order to avoid voltage dependence of diffused resistors. The fine ladder is designed either in polysilicon or diffusion, depending on secondary effects in the process implementation.
Fig. 1. Resistor network for the video D/A converter.
In a basic ladder design consisting of one string of 1024 resistors, the output impedance of the structure varies with the selected position on the ladder and therefore with the applied code. The varying output impedance in combination with the load capacitance results in unequal output charging time and consequently signal distortion of high-frequency output signals. This source of varying impedance has been eliminated by means of a resistive output rail. The insert in Fig. 1 shows a part of two rows of the matrix. Small resistors are placed in the output rail which connects the switches together. These resistors can be chosen in such a way that any path from the beginning of the resistor row to the end of the output rail shows the same impedance, independent of the chosen switch. This eliminates position-dependent charging of the output rail.
and therefore reduces the odd harmonics. In this design, partial cancellation was achieved by placing a unity resistor at the appropriate positions in the output rail. The use of unity resistors keeps the layout simple and does not require additional chip area.

The second source of the varying output impedance is the switch transistor. Usually its on-state gate voltage equals the positive power supply; the voltage on its source terminal, however, is position dependent. The turn-on voltage doubles from one end of the ladder to the other. In this design an additional supply ladder is placed on top of the signal ladders to keep the turn-on voltage of the switches more constant. Effectively the turn-on voltage of each switch transistor is made equal to the lowest turn-on voltage of a basic ladder D/A structure. Therefore there are no additional power supply constraints. For an easy implementation, the switches along each output rail have a common supply line. The variation in turn-on voltage is thereby reduced by a factor of 16. The upper group of switches is fed from the power supply while each lower group is fed with a voltage lowered by one-sixteenth of the maximum signal swing. An additional advantage of this compensation is that the impedance of the switch can be in the order of the total ladder resistance; the switches reduce in width and consequently the clock feedthrough is also reduced.
B. The Digital Decoder

The core of the D/A converter is formed by the 32-by-32 fine-resistor matrix. A switch and a two-input
AND gate\(^1\) are connected to each fine resistor to form a
basic cell. Two rows of 32 cells each are arranged around
one output rail to form one of the 16 sections of the 10-b
D/A converter (see Fig. 2). In operation one of the tap
voltages of the fine ladder is switched to one of the 16
output rails of the matrix and subsequently to the input of
the buffer. In order to select the proper switch, the 10-b
digital input word is split in two 5-b words which are
decoded by two sets of 5-to-32 decoders, as shown in Fig.
2. The 5-to-32 decoding is performed in two steps: a
predecoder converts into ten lines that control 32 three-
input NOR gates of which one gate is activated. In this way
minimum capacitive load is driven and maximum speed is
achieved. The two decoders are placed on two sides of
the matrix. The two sets of 32 decoded lines are latched
by the main clock before running horizontally and verti-
Fig. 2. Block diagram of the D/A converter.
Another key paper for matching-critical circuits:

Matching properties of MOS transistors - nctu.edu.tw - Get It@ISU
Abstract - The matching properties of the threshold voltage, substrate factor, and current factor of MOS transistors have been analyzed and measured. Improvements to the existing theory are given, as well as extensions for ...
Cited by 1072 - Related articles - Web Search - All 9 versions

Cited by 1337 (4/5/10)
Basic R-String DAC

\[V_{RFF} \]

\[V_{OUT} \]

Binary to Thermometer Decoder

\[2^n \]

\[X_{IN} \]

\[C_L \]
Switch Implementation Issues

n-channel

p-channel

T-gate
Switch Implementation Issues

n-channel

p-channel

T-gate
End of Lecture 34