EE 435

Lecture 34

DAC Design

- String DACs
DAC Architectures

- Type of Classification may not be unique nor mutually exclusive
- Structure is not mutually exclusive
- All approaches listed are used (and probably some others as well)
- Some are much more popular than others
 - Popular Architectures
 - Resistor String (interpolating)
 - Current Source Steering (with segmentation)
- Many new architectures are possible and some may be much better than the best currently available
- All have perfect performance if parasitic and matching performance are ignored!
- Major challenge is in determining appropriate architecture and managing the parasitics
Identifying Problems/Challenges and Clever/Viable Solutions

- Many problems occur repeatedly so should recognize what they are
- Identify clever solutions to basic problems – they often are useful in many applications
- Don’t make the same mistake twice!

The problem:

The perceived solution:

The practical or clever solution:

The List Keeper!
R-String DAC

Basic R-String DAC
R-String DAC

R-String DAC with MOS switches

Possible Limitations:

- Switch impedance is not 0
- Switch may not even turn on at all if V_{REF} is large
- Switch impedance is input-code dependent
- Time constants are input-code dependent
- Transition times are previous-code dependent
- C_L has 2^n diffusion capacitances so can get very large
- Mismatch of resistors
 - local random variation
 - gradient effects
- Decoder can get very large for n large
- Routing of the $2n$ switch signals can become very long and consume lots of area

Review from last lecture:
Basic R-String DAC

\[V_{RFF} \]

\[2^n \]

\[X_{IN} \]

\[n \]

Binary to Thermometer Decoder

\[V_{OUT} \]
Parasitic Capacitances in Tree Decoder
R-String DAC

Previous-Code Dependent Settling

Assume all C’s initially with 0V
Red denotes V_3, black denotes 0V, Purple some other voltage

Example:
V_3
R-String DAC

Transition from \langle 010 \rangle \text{ to } \langle 101 \rangle

Assume all C’s initially with 0V

Red denotes \(V_3 \), green denotes \(V_6 \), black denotes 0V, Purple some other voltage

Previous-Code Dependent Settling

Example:

Transition from \langle 010 \rangle \text{ to } \langle 101 \rangle
R-String DAC

Transition from <010> to <101>

White boxes show capacitors dependent upon previous code <010>

Assume all C’s initially with 0V
Red denotes V_3, green denotes V_6, black denotes 0V, Purple some other voltage
R-String DAC

Tree-Decoder in Digital Domain
R-String DAC

\[V_{REF} \]

R-String

\[X_{IN} \]

Tree Decoder

\[V_{OUT} \]
R-String DAC

\[X_{IN} \]

\[n = n_1 : n_2 \]

\[V_{RFF} \]

\[V_{OUT} \]
End of Lecture 34