EE 435

Lecture 37

DAC Design

R-2R DACs
Current Steering DACs
Charge Redistribution DACs
Current Steering DACs

R-2R Resistor Arrays

RREF

VOUT

R

b1

b2

b3

b4
Current Steering DACs

R-2R Resistor Arrays
Another R-2R DAC
Another R-2R DAC

- Switch impedance does not affect accuracy!
- Requires two levels of matching
Another R-2R DAC
Current Steering DAC

\[I_{OUT} = kI \]
Current Steering DAC

$I_{OUT} = kI$

V_{OUT}

R_F
Current Steering DAC
Current Steering DAC
Current Steering DAC

\[I_d1 \quad I_d2 \quad \ldots \quad I_dN-1 \]

\[V_{OUT} \]

\[V_{XX} \]

\[V_{SS} \]

\[I_{OUT} = kI \]

\[R_f \]

\[V_{OUT} \]
Current Steering DAC

\[I_d1 \quad I_d2 \quad I_dN-1 \]

\[V_{OUT} \]

\[d_k \]

\[V_{SS}, V_{XX}, V_{YY} \]

Cascode Current Source (Mirror)

Differential Amplifier (Analog)

\[I_{OUT} = kI \]
Current Steering DAC
Current Steering DAC

![Diagram of a current steering DAC with components labeled for voltage sources V_{XX} and V_{YY}, transistors M_{1} to M_{4}, capacitors C_{P1} and C_{P2}, and output current I_{OUT}=kI. The diagram also includes a binary to analog decoder and an op-amp configuration for signal amplification.]
Current Steering DAC with Supply Independent Biasing

If transistors on top row are all matched, \(I_X = V_{REF}/R \)

Thermometer coded structure (requires binary to thermometer decoder)

\[
I_A = \left(\frac{V_{REF}}{R} \right)^{N-1} \sum_{i=0}^{N-1} d_i
\]

Provides Differential Output Currents
Current Steering DAC with Supply Independent Biasing

If transistors on top row are all matched, $I_X = V_{REF}/R$

$$V_A = \left(-V_{REF} \frac{R_A}{R}\right) \sum_{i=0}^{N-1} d_i$$

Provides Differential Output Voltages
Current Current Steering DAC with Supply Independent Biasing

If transistors on top row are binary weighted

\[I_A = \left(\frac{V_{REF}}{R} \right)^{n-1} \sum_{i=0}^{n-1} \frac{d_i}{2^{n-i}} \]

Provides Differential Output Currents