EE 435

Lecture 38

DAC Design

Dynamic Current Source Matching
Charge Redistribution DACs

ADC Design

ADC Architectures
Dynamic Current Source Matching

- Correct charge is stored on C to make all currents equal to I_{REF}
- Does not require matching of transistors or capacitors
- Requires refreshing to keep charge on C
- Form of self-calibration
- Calibrates current sources one at a time
- Current source unavailable for use while calibrating
- Can be directly used in DACs (thermometer of binary coded)

Often termed “Current Copier” or “Current Replication” circuit
Dynamic Current Source Matching

Extra current source can be added to facilitate background calibration
A charge redistribution circuit

Clocks are complimentary non-overlapping
During phase ϕ_1

\[
Q_{\phi_1} = CV_{IN} \\
- \frac{CV_{IN}}{C_F} = V_{OUT} \\
\frac{V_{OUT}}{V_{IN}} = - \frac{C}{C_F}
\]

During phase ϕ_2

\[
Q_{CF} = 0 \\
Q_C = 0
\]

Serves as an inverting amplifier

Gain can be very accurate

Output valid only during Φ_1
Another charge redistribution circuit

C_X does some good things
(mitigates V_{OS}, $1/f$ noise and finite gain errors)

Will not consider C_X affects at this time

During phase ϕ_1

$Q_{C\phi_1} = CV_{IN}$

$Q_{CF\phi_1} \approx 0$

During phase ϕ_2

$\frac{Q_{C\phi_1}}{C_T} = V_{OUT}$

$\frac{CV_{IN}}{C_T} = V_{OUT}$

$\frac{V_{OUT}}{V_{IN}} = \frac{C}{C_T}$

Serves as a noninverting amplifier
Gain can be very accurate
Output valid only during Φ_1
Another charge redistribution circuit

During phase ϕ_1

$$Q_{C\phi_1} = CV_{IN}$$

$$Q_{CF\phi_1} = C_F V_{IN}$$

During phase ϕ_2

$$Q_{C\phi_2} = 0$$

$$Q_{CF\phi_2} = Q_{C\phi_1} + Q_{C\phi_1}$$

$$-\frac{Q_{CF\phi_2}}{C_F} = V_{OUT}$$

$$\frac{CV_{IN} + C_F V_{IN}}{C_F} = V_{OUT}$$

$$\frac{V_{OUT}}{V_{IN}} = 1 + \frac{C}{C_F}$$

Serves as a noninverting amplifier

Gain can be very accurate

Termed a “flip-around” amplifier
Another charge redistribution circuit

![Diagram of a charge redistribution circuit with switches and an operational amplifier]

- V_{IN}
- C
- ϕ_1
- ϕ_2
- ϕ_1
- ϕ_2
- V_{OUT}
- C_F
- T_{CLK}

- Waveforms for ϕ_1 and ϕ_2 are shown with a period T_{CLK}.
Another charge redistribution circuit

During phase ϕ_1

$$Q_{\phi_1} = CV_{IN}$$
$$Q_{CF} = 0$$

During phase ϕ_2

$$\frac{Q_{\phi_1}}{C_F} = V_{OUT}$$
$$\frac{CV_{IN}}{C_F} = V_{OUT}$$
$$\frac{V_{OUT}}{V_{IN}} = \frac{C}{C_F}$$

Serves as a noninverting amplifier
Gain can be very accurate
Output valid only during Φ_2
Another charge redistribution circuit

During phase ϕ_1

\[Q_{\phi_1} = CV_{IN} \]
\[Q_{CF} = -CV_{IN} = CFV_{OUT} \]
\[\frac{V_{OUT}}{V_{IN}} = -\frac{C}{C_F} \]

During phase ϕ_2

\[V_{OUT} = 0 \]
\[Q_C = Q_{CF} = 0 \]

Serves as an inverting amplifier
Gain can be very accurate
Output valid only during Φ_1
A charge redistribution DAC

C_X does some good things
(mitigates V_{os}, 1/f noise and finite gain errors)

Will not consider C_X affects at this time
A charge redistribution DAC

During phase ϕ_1

$$Q_{\phi_1} = V_{REF} \sum_{i=0}^{n-1} d_i \cdot 2^i C$$

$$Q_{CF} = 0$$

During phase ϕ_2

$$V_{OUT}(\phi_2) = \frac{1}{C_F} Q_{\phi_1}$$

$$V_{OUT}(\phi_2) = \frac{1}{2^n C} V_{REF} \sum_{i=0}^{n-1} d_i \cdot 2^i C$$

$$V_{OUT}(\phi_2) = V_{REF} \sum_{i=0}^{n-1} \frac{d_i}{2^{n-i}}$$