EE 435

Lecture 38

- Current Steering DACs
- Charge Redistribution Circuits
Another R-2R DAC

Requires matching both current sources and resistors
But switch impedance does not affect performance
β is independent of Boolean code
Node voltages in R/2R block must change for any input transitions
Current Steering DAC

Review from Last Lecture

\[I_{OUT} = kI \]

Switch impedance of little concern
Review from Last Lecture

Current Steering DAC
Current Steering DAC

Is linearity or output impedance of current source of concern?
Not if individual slices are matched!
Op Amp can be eliminated so speed can be increased and power reduced

R_{TERM} often 50Ω or 100Ω

R_{TERM} can be internal or external

Switch impedance now of concern

Output impedance of current sources now of concern
Current Steering DAC

- Binary to Thermometer Decoder (all ON)
- $I_{OUT} = kI$
- Cascode Current Source (Mirror)
- Differential Amplifier (Analog)
Review from Last Lecture

Current Steering DAC
Current Steering DAC

• Need only signal swing of $2\sqrt{2}V_{EB}$ to steer currents (so can reduce turn-on and turn-off times)
• Steering also results in cascading with M_3 and M_4 thus increasing output impedance of current source (so can probably eliminate M_2)
Multiple-output Transconductance Amplifier

- Good linearity
- Each additional output requires only one additional transistor
Current Steering DAC with Supply Independent Biasing

If transistors on top row are all matched, $I_X = \frac{V_{REF}}{R}$

Thermometer coded structure (requires binary to thermometer decoder)

$$I_A = \left(\frac{V_{REF}}{R}\right)^{N-1} \sum_{i=0}^{N-1} d_i$$

Provides Differential Output Currents
Current Steering DAC with Supply Independent Biasing

If transistors on top row are all matched, \(I_X = \frac{V_{REF}}{R} \)

\[
V_A = \left(-V_{REF} \frac{R_A}{R} \right)^{N-1} \sum_{i=0}^{N-1} d_i
\]

Provides Differential Output Voltages
Current Current Steering DAC with Supply Independent Biasing

If transistors on top row are binary weighted

\[I_A = \left(\frac{V_{REF}}{R} \right)^{n-1} \sum_{i=0}^{n-1} \frac{d_i}{2^{n-i}} \]

Provides Differential Output Currents
Matching is Critical in all DAC Considered

Obtaining adequate matching remains one of the major challenges facing the designer!
Dynamic Current Source Matching

- Correct charge is stored on C to make all currents equal to I_{REF}
- Does not require matching of transistors or capacitors
- Requires refreshing to keep charge on C
- Form of self-calibration
- Calibrates current sources one at a time
- Current source unavailable for use while calibrating
- Can be directly used in DACs (thermometer of binary coded)

Often termed “Current Copier” or “Current Replication” circuit
Dynamic Current Source Matching

Extra current source can be added to facilitate background calibration
Charge Redistribution DACs

- Previous DACs based upon matching of resistors or transistors

- Switch impedance was of concern in most of the structures

- Capacitor matching can be very good in most processes and area required for a given level of matching may be smaller for capacitors than for resistors or transistors in some processes

- Capacitor linearity is often excellent

Will now focus on building DACs that take advantage of good capacitor matching and linearity
A charge redistribution circuit

Clocks are complimentary non-overlapping
A charge redistribution circuit

During phase ϕ_1

$Q_{\phi_1} = CV_{IN}$

$Q_{CF} = 0$

During phase ϕ_2

$\frac{Q_{\phi_1}}{C_F} = V_{OUT}$

$\frac{CV_{IN}}{C_F} = V_{OUT}$

$\frac{V_{OUT}}{V_{IN}} = \frac{C}{C_F}$

Serves as a noninverting amplifier

Gain can be very accurate

Output valid only during Φ_2
Another charge redistribution circuit
A charge redistribution circuit

During phase ϕ_1

$Q_{\phi_1} = CV_{IN}$

$Q_{CF} = 0$

During phase ϕ_2

$\frac{-Q_{\phi_1}}{C_F} = V_{OUT}$

$\frac{-CV_{IN}}{C_F} = V_{OUT}$

$\frac{V_{OUT}}{V_{IN}} = -\frac{C}{C_F}$

Serves as an inverting amplifier
Gain can be very accurate
Output valid only during Φ_2
A charge redistribution DAC

\[C_F = 2^n C \]

\[V_{OUT} \]

\[C_X \]

\[\phi_1 \]

\[\phi_2 \]

\[V_{REF} \]

\[T_{CLK} \]

\[\phi_1 \]

\[\phi_2 \]

\[\phi_{1A} \]

\[\phi_{2A} \]

CX does some good things
(mitigates V_{OS}, 1/f noise and finite gain errors)

Will not consider CX affects at this time
A charge redistribution DAC

During phase ϕ_1

$$Q_{\phi_1} = V_{\text{REF}} \sum_{i=0}^{n-1} d_i \cdot 2^i C$$

$$Q_{CF} = 0$$

During phase ϕ_2

$$V_{\text{OUT}}(\phi_2) = \frac{1}{C_F} Q_{\phi_1}$$

$$V_{\text{OUT}}(\phi_2) = \frac{1}{2^n C} V_{\text{REF}} \sum_{i=0}^{n-1} d_i \cdot 2^i C$$

$$V_{\text{OUT}}(\phi_2) = V_{\text{REF}} \sum_{i=0}^{n-1} \frac{d_i}{2^{n-i}}$$
Stay Safe and Stay Healthy!
End of Lecture 38