Clocked Comparator

Regenerative Feedback

Large offset voltage (100mV or more)
Review from Last Time

Flash ADC with Front-End S/H

X_{IN} → S/H → Flash ADC → X_{OUT}

C_{LK}
Clocked Comparator

Preamplifier with offset compensation and regenerative latch

Gain of preamplifier may still not be large enough
Two-Step Flash ADC with Interstage Gain

Review from Last Time
Review from Last Time

Three-Step Flash ADC with Interstage Gain
Pipelined ADC

\[X_{\text{OUT}} = \langle n_1 : n_2 : \ldots : n_m \rangle \]
Pipelined ADC
Pipelined ADC Stage k
Pipelined ADC Stage k

Pipeline Stage

Usually Realized as Single SC Block

X_{INk}

DAC_k

ADC_k

n_k

d_k

V_{REF}

A_k

S/H_k

CLK

X_{OUTk}
Pipeline Stage

Pipelined ADC Stage k

Pipeline Stage

\(X_{\text{IN}k} \)

ADC\(_k\)\(,\ \text{DAC}_k\)

\(n_k \)

\(d_k \)

\(V_{\text{REF}} \)

\(C_{\text{LK}} \)

\(x_{\text{OUT}k} \)

Usually Realized as Flash ADC
(often simple comparator if \(n_k = 1 \))
Pipelined ADC Stage k

Pipeline Stage for 1 bit/stage

$\begin{align*}
V_O &= \begin{cases}
2V_{IN} + \frac{V_{REF}}{2} & \text{if } V_{IN} < 0 \\
2V_{IN} - \frac{V_{REF}}{2} & \text{if } V_{IN} > 0
\end{cases}
\end{align*}$

Diagram:
- X_{IN_k}
- X_{OUT_k}
- V_{REF}
- V_{IN}
- d_k
- C_{LK}

Components:
- ADC_k
- DAC_k
- S/H_k
Transfer Characteristics for 1 bit/stage

\[V_O = \begin{cases}
2V_{\text{IN}} + \frac{V_{\text{REF}}}{2} & \text{if } V_{\text{IN}} < 0 \\
2V_{\text{IN}} - \frac{V_{\text{REF}}}{2} & \text{if } V_{\text{IN}} > 0
\end{cases} \]
Consider the following circuit

\[V_{IN} \] \[V_{OUT} \]

\[C_1 \]

\[C_2 \]

\[\Phi_1 \]

\[\Phi_2 \]

\[V_X \]

\[+ \]

\[T \]
Consider the following circuit

During Φ_1

During Φ_2
Consider the following circuit

During Φ_1

$$Q_1 = C_1 \left(V_{IN} - V^+ \right)$$
$$Q_2 = C_2 \left(V_{IN} - V^+ \right)$$
Consider the following circuit

During Φ_2
Consider the following circuit

\[Q_1 = C_1 (V_{IN} - V^+) \]
\[Q_2 = C_2 (V_{IN} - V^+) \]

During \(\Phi_2 \)

Define \(Q_{1T} \) to be the charge transferred from \(C_1 \) during phase \(\Phi_2 \)

\[Q_{1T} = C_1 (V_{IN} - V^+) - C_1 (V_X - V^+) = C_1 (V_{IN} - V_X) \]

Define \(Q_{2F} \) to be the total charge on \(C_2 \) during phase \(\Phi_2 \)

\[Q_{2F} = Q_2 + Q_{1T} = C_2 (V_{IN} - V^+) + C_1 (V_{IN} - V_X) = (C_1 + C_2)V_{IN} - C_2 V^+ - C_1 V_X \]
Consider the following circuit

During Φ_2

$$Q_{2F} = (C_1 + C_2) \, V_{IN} - C_2 \, V^+ - C_1 \, V_X$$

$$V_{C2F} = \frac{Q_{2F}}{C_2} = \left(1 + \frac{C_1}{C_2}\right) V_{IN} - V^+ - \frac{C_1}{C_2} \, V_X$$

$$V_{OUTF} = V_{C2F} + V^+ = \left(1 + \frac{C_1}{C_2}\right) V_{IN} - \frac{C_1}{C_2} \, V_X$$
Consider the following circuit

\[V_{OUTF} = \left(1 + \frac{C_1}{C_2}\right)V_{IN} - \frac{C_1}{C_2}V_X \]

If \(C_1 = C_2 = C \) and \(V_X = -\frac{V_{REF}}{2} \),

\[V_{OUTF} = 2V_{IN} + \frac{V_{REF}}{2} \]
Consider the following circuit

\[V_{OUTF} = \left(1 + \frac{C_1}{C_2}\right)V_{IN} - \frac{C_1}{C_2}V_X \]

Likewise

If \(C_1 = C_2 = C \) and \(V_X = \frac{V_{REF}}{2} \)

\[V_{OUTF} = 2V_{IN} - \frac{V_{REF}}{2} \]
Observe

\[
V_O = \begin{cases}
2V_{IN} + \frac{V_{REF}}{2} & \text{if } V_{IN} < 0 \\
2V_{IN} - \frac{V_{REF}}{2} & \text{if } V_{IN} > 0
\end{cases}
\]
1-bit/Stage Pipeline Implementation

\[
V_O = \begin{cases}
2V_{IN} + \frac{V_{REF}}{2} & \text{if } V_{IN} < 0 \\
2V_{IN} - \frac{V_{REF}}{2} & \text{if } V_{IN} > 0
\end{cases}
\]
1-bit/Stage Pipeline Implementation

V_{INk}

V_{REF}

ADC

V_{INk}

1

d_k
Interpolating ADC

- Amplifiers are finite-gain saturating
- Shown for 4-bit
- Clocked comparators usually regenerative
- Reduces Offset Requirements for Comparators

![Diagram of Interpolating ADC](image-url)
Cyclic (Algorithmic) ADC

- Re-use Pipelined Stage
- Small amount of hardware
- Effective thru-put decreases
End of Lecture 42