EE 435

Lecture 6:

Current Mirrors
Signal Swing
Review from last lecture:
Performance with Common-Mode Input

Consider tail-current bias amplifier

\[V_{OUTC} = 0 \] thus \(A_C = 0 \)
Review from last lecture:
Performance with Common-Mode Input
Consider tail-voltage bias amplifier

![Common-Mode Half-Circuit Diagram]

Solving, we obtain

$$\frac{\nu_{OUTC}}{\nu_C} = A_C = \frac{-G_{M1}}{sC + G_1 + G_2}$$

This circuit has a rather large common-mode gain and will not reject common-mode signals.
Review from last lecture:

Single-stage low-gain differential op amp

\[A(s) = \frac{-g_{m1}}{2sC_L + g_{o1} + g_{o3}} \]

\[A_o = \frac{g_{m1}}{2} \frac{1}{g_{o1} + g_{o3}} \]

\[GB = \frac{g_{m1}}{2C_L} \]

What are the number of degrees of freedom?
(assume \(V_{DD}, C_L \) fixed)

Natural Parameters:
\[\left\{ \frac{W_1}{L_1}, \frac{W_3}{L_3}, \frac{W_5}{L_5}, V_{B1}, V_{B3} \right\} \]

Constraints: \(I_{D5} \approx 2I_{D3} \)

Net Degrees of Freedom: 4

Practical Parameters:
\[\{ V_{EB1}, V_{EB3}, V_{EB5}, P \} \]

Need a CMFB circuit to establish \(V_{b1} \)
Review from last lecture:
Expressions valid for both tail-current and tail-voltage op amp

So which one should be used?

- Common-mode input range large for tail current bias
- Improved rejection of common-mode signals for tail current bias
- Extra design degree of freedom for tail current bias
- Improved output signal swing for tail voltage bias (will show later)
Definition: The slew rate of an amplifier is the maximum rate of change that can occur at an output node.

SR is a nonlinear large-signal characteristic.
Input is over-driven hard (some devices in amplifier usually leave normal operating region).
Magnitude of SR^+ and SR^- usually same and called SR (else SR^+ and SR^- must be given).
Review from last lecture:

Amplifier Structure Summary

<table>
<thead>
<tr>
<th>Small Signal Parameter Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Source</td>
</tr>
<tr>
<td>$A_{vo} = \frac{g_m}{g_o}$</td>
</tr>
<tr>
<td>$GB = \frac{g_m}{C_L}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Practical Parameter Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Source</td>
</tr>
<tr>
<td>$A_{vo} = \left(\frac{2}{\lambda}\right)\left(\frac{1}{V_{EB}}\right)$</td>
</tr>
<tr>
<td>$GB = \left(\frac{2P}{V_{DD}C_L}\right)\left(\frac{1}{V_{EB}}\right)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Small Signal Parameter Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Op Amp</td>
</tr>
<tr>
<td>$A_{vo} = \frac{1}{2} \frac{g_{m1}}{g_{o1} + g_{o3}}$</td>
</tr>
<tr>
<td>$GB = \frac{g_{m1}}{2C_L}$</td>
</tr>
<tr>
<td>$SR = \frac{g_{01}}{\lambda C_L}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Practical Parameter Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Op Amp</td>
</tr>
<tr>
<td>$A_{vo} = \left[\frac{1}{\lambda_1 + \lambda_3}\right]\left(\frac{1}{V_{EB1}}\right)$</td>
</tr>
<tr>
<td>$GB = \left(\frac{P}{2V_{DD}C_L}\right)\cdot\left[\frac{1}{V_{EB1}}\right]$</td>
</tr>
<tr>
<td>$SR = \frac{P}{2V_{DD}C_L}$</td>
</tr>
</tbody>
</table>

- **EB**
- **C**
- **V**
- **P**
- **SR**
- **GB**
- **2P**
- **2V**
- **DD**
- **C**
- **L**
- **2**
- **3**
Single-stage low-gain differential op amp

Need a CMFB circuit to establish V_{B1} or V_{B2}

CMFB amplifies difference between V_{B1} and average of two signal inputs

Can apply to either V_{B1} or V_{B2} but not both

Often apply to only fraction of transistor
Single-stage low-gain differential op amp

Need a CMFB circuit to establish V_{b1}

The CMFB circuit is often quite large and requires considerable design effort!

Can the CMFB be removed?
Operation of Op Amp – A different perspective

The signal dependent current in quarter circuit is steered to output node and drives the parallel output conductances of the quarter circuit and counterpart circuit.

If the signal-dependent current could be doubled, the gain would be doubled as well!

\[A_{VO} = \frac{-G_{M1}}{2(G_1 + G_2)} \]
\[BW = \frac{G_1 + G_2}{C_L} \]
\[GB = \frac{G_{M1}}{2C_L} \]
Operation of Op Amp – A different perspective

Small signal differential half-circuit

If the input impedance to the counterpart circuit is infinite, connecting the bias port of the quarter circuit to V_{0-} instead of V_{BB} will cause the signal current in the right counterpart circuit to be equal to that in the left counterpart circuit.

This will double the signal current to V_{0+} and thus double the voltage gain!

This will also eliminate the need for a CMFB circuit!
If the current I_{BB} is small compared to I_{IN}, and the current I_{IN} is nearly independent of the voltage across P, then $I_{OUT} \approx I_{IN}$

Circuits with this property are called Current Mirrors

If multiple copies of the right circuit are placed in parallel, the current will be scaled by the number of copies

These scaled circuits are also called Current Mirrors

As long as $I_{BB} \ll I_{IN}$, this scaling in currents occurs even if the circuits are highly nonlinear provided the voltages across the circuits are the same!
Operation of Op Amp – A different perspective

Basic Current Mirror
Current Mirrors

• Current mirrors are really just a current amplifier
• Simple current mirror was used to eliminate CMFB and double gain in basic op amp
• Many different current mirrors exist with varying levels of performance
Basic Current Mirror

At the output port, small signal equivalent is a one-port

\[g_{out} = g_{02} \]
Basic Current Mirror

\[I_{IN} = \frac{\mu C_{OX} W_1}{2L_1} (V_{GS1} - V_T)^2 \]

\[I_{OUT} = \frac{\mu C_{OX} W_2}{2L_2} (V_{GS2} - V_T)^2 \]

\[\frac{I_{OUT}}{I_{IN}} = \frac{W_2}{W_1} \frac{L_1}{L_2} \]

At the output port, small signal equivalent is a one-port

\[g_{out} = g_{02} \]
Current Mirrors

- More advanced current mirrors exist
- Several of these are discussed in the text
Current Mirrors

K copies of F on right

\[I_{OUT} = K I_{IN} \]

Replication of K copies is often simply denoted as a device sizing or scaling factor

Properties of Current Mirrors of Interest:

- Mirror Gain Accuracy
- Signal Swing at Output
- Output Impedance (ideally infinite)

More advanced current mirrors usually offer improvements in one or more of these properties
More Advanced Current Mirrors

Cascode Current Mirror

Wilson Current Mirror

Modified Wilson Current Mirror
Current Mirrors

- The concept of the current mirror was first introduced in about 1969 (not certain who introduced it but probably Wheatley and Wittlinger)

- Many of the basic current mirror circuits were introduced within a few years after the concept first appeared

- How many current mirror circuits are there?

- Have any current mirrors been introduced recently?

- Is there still an opportunity to contribute to the current mirror field?
USPTO search on Jan 26, 2014
509 patents with “current and mirror” in title since 1976

Results of Search in US Patent Collection db for:
TTL/(current AND mirror): 509 patents.

Hits 1 through 50 out of 509

Next 50 Hits

Jump To

Refine Search

TTL/(current AND mirror)

PAT. NO.
1 8,618,787 Current mirror and high-compliance single-stage amplifier
2 8,598,953 System and method for pre-charging a current mirror
3 8,598,914 Comparator circuit with current mirror
4 8,587,287 High-bandwidth linear current mirror
5 8,575,971 Current mirror and current cancellation circuit
6 8,569,674 Multiplexed photocurrent monitoring circuit comprising current mirror circuits
7 8,537,868 Laser diode write driver feedback, current mirror, and differential-pair circuitry
8 8,531,226 Current mirror arrangement and method for switching on a current
9 8,519,794 Current mirror with low headroom and linear response
10 8,511,842 Eddy current based mirror wavefront control
11 8,502,751 Pixel driver circuit with load-balance in current mirror circuit
12 8,471,631 Bias circuit, power amplifier, and current mirror circuit
13 8,456,227 Current mirror circuit
14 8,450,992 Wide-swing cascode current mirror
15 8,441,381 Gate leakage compensation in a current mirror
USPTO search on Jan 22, 2012
475 patents with “current and mirror” in title since 1976

Results of Search in US Patent Collection db for:
TTL/(current AND mirror): 475 patents.
Hits 1 through 50 out of 475

<table>
<thead>
<tr>
<th>PAT. NO.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>8,026,757</td>
<td>Current mirror circuit, in particular for a non-volatile memory device</td>
</tr>
<tr>
<td>7,994,861</td>
<td>System and method for pre-charging a current mirror</td>
</tr>
<tr>
<td>7,973,488</td>
<td>Constant current driver circuit with voltage compensated current sense mirror</td>
</tr>
<tr>
<td>7,933,138</td>
<td>F-ROM device with current mirror sense amp</td>
</tr>
<tr>
<td>7,932,712</td>
<td>Current-mirror circuit</td>
</tr>
<tr>
<td>7,923,942</td>
<td>Constant current source mirror tank dimmable ballast for high impedance lamps</td>
</tr>
<tr>
<td>7,915,948</td>
<td>Current mirror circuit</td>
</tr>
<tr>
<td>7,911,870</td>
<td>Fuse data read circuit having control circuit between fuse and current mirror circuit</td>
</tr>
<tr>
<td>7,907,012</td>
<td>Current mirror with low headroom and linear response</td>
</tr>
<tr>
<td>7,894,235</td>
<td>F-ROM device with current mirror sense amp</td>
</tr>
<tr>
<td>7,889,106</td>
<td>Current mirror circuit and digital-to-analog conversion circuit</td>
</tr>
<tr>
<td>7,868,808</td>
<td>Phase-locked loop circuitry using charge pumps with current mirror circuitry</td>
</tr>
<tr>
<td>7,859,135</td>
<td>Internal power supply circuit having a cascode current mirror circuit</td>
</tr>
<tr>
<td>7,858,966</td>
<td>Protected qubit based on superconducting current mirror</td>
</tr>
<tr>
<td>7,851,834</td>
<td>Cascade current mirror and method</td>
</tr>
<tr>
<td>7,839,670</td>
<td>F-ROM device with current mirror sense amp</td>
</tr>
<tr>
<td>7,834,694</td>
<td>Differential current mirror circuit</td>
</tr>
</tbody>
</table>
USPTO search on Jan 26, 2014

509 patents with “current and mirror” in title since 1976

34 patents with “current and mirror” in title in 2012 and 2013

- Averaged 12.4 patents/year from 1976 to 2006
- Averaged 17 patents in 2012 and 2013
Is there still an opportunity to contribute to the current mirror field?

509 patents with “current and mirror” in title since 1976

34 patents with “current and mirror” in title in 2012 and 2013

Number of patents/year in this area still well above the 3-decade average

Is there still an opportunity to contribute to the current mirror field?
Google Patents search on Jan 27, 2014
Google Patents search on Jan 27, 2014

Current mirror arrangement and method for switching on a current
www.google.com/patents/US8531236
Grant - Filed Nov 20, 2008 - Issued Sep 10, 2013 - Franz Lechner - Ams Ag
A current mirror arrangement comprises a switchable, adjustable current source (Q1, Q2) for providing an impression current (IP), a current mirror (SP) having an...
Overview - Related - Discuss

Current mirror and current cancellation circuit
www.google.com/patents/US8575971
Grant - Filed Jan 18, 2013 - Issued Nov 5, 2013 - Anand Chamakura - Maxim Integrated Products, Inc.
Techniques are described to mirror currents and subtract currents accurately. In an implementation, a circuit includes a first current source coupled to a first node...
Overview - Related - Discuss

High-bandwidth linear current mirror
www.google.com/patents/US8587287
Grant - Filed Jul 1, 2010 - Issued Nov 19, 2013 - Christian Larsen - Conexant Systems, Inc.
High linearity is essential in audio circuitry. As sampling rates for audio applications are needed, high speed and high linearity are needed in analog and mixed...
Overview - Related - Discuss
Current mirror with low headroom and linear response

www.google.com/patents/US8519794
Grant - Filed Feb 25, 2013 - Issued Aug 27, 2013 - Sandro Herrera - Analog Devices, Inc.
A current mirror circuit provided in an emitter follower configuration achieves linearly output over a range of input currents by operating in response to a bias ...
Overview - Related - Discuss

Bias circuit, power amplifier, and current mirror circuit

www.google.com/patents/US8471631
There is provided a bias circuit that can operate even at low voltage and control a current reflecting a change in drain voltage. A first current mirror circuit for ...
Overview - Related - Discuss

Photoelectric conversion device comprising a current mirror...

www.google.com/patents/US8431883
Grant - Filed Jun 16, 2008 - Issued Apr 30, 2013 - Makoto Yanagisawa - Semiconductor Energy Laboratory Co., Ltd.
It is an object to provide a photoelectric conversion device which can solve the problem of leakage current or noise caused when the photoelectric conversion ...
Overview - Related - Discuss

Current mirror circuit

www.google.com/patents/US8456227
Grant - Filed Mar 14, 2011 - Issued Jun 4, 2013 - Kenichi HIRASHIKI - Kabushiki Kaisha Toshiba
In one embodiment, a current mirror circuit includes first to fourth insulated gate field effect transistors (FETs), and a bias circuit. The gate electrodes of the first ...
Overview - Related - Discuss

HDMI driver tail current transistors with current mirror...

www.google.com/patents/US8378653
Grant - Filed Aug 17, 2009 - Issued Feb 19, 2013 - Hugh Thomas Mair - Texas Instruments Incorporated
A HDMI (High-Definition Multimedia Interface) transmitter component may be operated solely on power that is scavenged and converted from termination tail ...
Overview - Related - Discuss
Google Patents search on Jan 27, 2014

63 hits but includes some foreign patents
Comparison of Search Engines
Google Patents search on Jan 27, 2014

For most recent two-year period:

34 patents found

63 patents found

Google includes some foreign patents
Single-stage low-gain differential op amp

• Can eliminate CMFB circuit if only single-ended output is needed by connecting counterpart circuits as a current mirror
• This will double the voltage gain and the GB as well
• Still uses counterpart circuits but terminated in different ways
• Although not symmetric, previous analysis results with specified modifications still nearly apply
Single-stage low-gain differential op amp
Current-Mirror Connected Counterpart Circuit

No CMFB Circuit Needed

\[
A(s) = \frac{g_{m1}}{sC_L + g_{o1} + g_{o3}}
\]

\[
A_o = \frac{g_{m1}}{g_{o1} + g_{o3}}
\]

\[
G_B = \frac{g_{m1}}{C_L} \quad \text{SR} = \frac{I_T}{C_L}
\]

In terms of practical design space parameters

\[
A_o = \left[\frac{1}{\lambda_1 + \lambda_3}\right] \left(\frac{2}{V_{EB1}}\right) \quad G_B = \left(\frac{P}{V_{DD}C_L}\right) \cdot \left[\frac{1}{V_{EB1}}\right] \quad \text{SR} = \frac{P}{V_{DD}C_L}
\]
Signal Swing

To keep M_1 out of Triode Region

$L_1: \quad V_{OUT} > V_{iN} - V_{Tn}$

To keep M_1 out of Cutoff

$L_2: \quad V_{iN} > V_{Tn}$

To keep M_2 out of Triode Region

$L_3: \quad |V_{OUT} - V_{DD}| > |V_{XX} - V_{DD} - V_{Tp}|$

\[V_{XX} - V_{Tp} > V_{OUT} \]
Signal Swing

\[\mathcal{L}_1 : \quad V_{OUT} > V_{iN} - V_{Tn} \]

\[\mathcal{L}_2 : \quad V_{iN} > V_{Tn} \]

\[\mathcal{L}_3 : \quad V_{XX} - V_{Tp} > V_{OUT} \]
Signal Swing

V_{OUT}

V_{CC}

$L_1: V_{\text{OUT}} > V_{\text{iN}} - V_{\text{Th}}$

$L_2: V_{\text{iN}} > V_{\text{Th}}$

$L_3: V_{XX} - V_{T_p} > V_{\text{OUT}}$

V_{CC}

V_{Th}

V_{iC}
Signal Swing

How do the transfer characteristics relate to the signal swing?

Observe signal swing boundaries are same as operating region changes for transfer characteristics.
Signal Swing

How do the transfer characteristics relate to the signal swing?

For this circuit, high gain and large output signal swing for small V_{EB1}
Signal Swing of Single-Stage Op Amp

For high-gain amplifiers, V_d is inherently very small so we are only concerned about output signal swing vs V_{iC}.

Generally large swings come at expense of other desirable characteristics.
Signal Swing of Single-Stage Op Amp

What type of signal swing is needed?

Wide V_{iC} and V_{OUT} range

Narrow V_{iC} and wide V_{OUT} range

Narrow V_{OUT} and wide V_{iC} range

Narrow V_{iC} and V_{OUT} range
Signal Swing of Single-Stage Op Amp

What type of signal swing is needed?

Wide V_{iC} and V_{OUT} range

Expected for catalog parts and overall I/O in many applications

Narrow V_{OUT} and wide V_{iC} range

Acceptable when followed by high-gain stage

Narrow V_{iC} and wide V_{OUT} range

Acceptable when V_{iC} fixed and followed by high-gain stage
End of Lecture 6