EE 435

Lecture 9:

High-Gain Single-Stage Op Amps
Background

Review from last lecture:

Determination of 2-port parameters

Determination of \{g_{o1}, g_{o2}, g_{M1}, g_{M2}\}

Method 2 Load Termination Approach

express the gain \(A(s)\) in form

\[
A(s) = \frac{a_0}{sC_L + b_0}
\]

observe

\[
V_2(g_{o2} + sC_L) + g_{M2}V_{TST} = 0
\]

\[
A(s) = \frac{V_2(s)}{V_{TST}(s)} = -\frac{g_{M2}}{sC_L + g_{o2}}
\]

(must express in integer-monic form)
Review from last lecture:

High output impedance quarter-circuits

Cascode Amplifier (small-signal equiv)
Telescopic Cascode Op Amp

Single-ended operation

$$A_o = \frac{-g_{m1}}{2g_{01}\frac{g_{03}}{g_{m3}} + g_{05}\frac{g_{07}}{g_{m7}}}$$

$$GB = \frac{g_{m1}}{2C_L}$$

This circuit is widely used!!

(CMFB circuit not shown)
Review from last lecture:

High output impedance quarter-circuits

Regulated Cascode Amplifier or “Gain Boosted Cascode”

(A is usually a simple amplifier, often the reference op amp with + terminal connected to the desired quiescent voltage)
Gain-Boosted Telescopic Cascode Op Amp

Review from last lecture:

\[A_o = \frac{-g_{m1}}{2} \]

\[g_{o1} \frac{A_1 g_{o3}}{g_{m3}} + g_{o5} \frac{A_3 g_{o7}}{g_{m7}} \]

\[GB = \frac{g_{m1}}{2C_L} \]

This is modestly less efficient at generating GB because now power is consumed in both the cascode devices and the boosting amplifier.
Review from last lecture:

What circuit is this?

Biased Folded Cascode

Implementation of Biased Folded Cascode
Laboratory Support

Offset Voltage

- Systematic Offset Voltage
- Random Offset Voltage

![Op amp diagram with inputs labeled V_{ICQ} and output labeled V_{OUT}]
Laboratory Support

Offset Voltage

- Systematic Offset Voltage
- Random Offset Voltage

![Op Amp Diagram]

Definition: The output offset voltage is the difference between the desired output and the actual output when \(V_{id}=0 \) and \(V_{ic} \) is the quiescent common-mode input voltage.

\[
V_{OUTOFF} = V_{OUT} - V_{OUTDES}
\]

Note: \(V_{OUTOFF} \) is dependent upon \(V_{ICQ} \), although this dependence is usually quite weak and often not specified.
Laboratory Support

Definition: The input-referred offset voltage is the differential dc input voltage that must be applied to obtain the desired output when V_{ic} is the quiescent common-mode input voltage.

Note: V_{OFF} is usually related to the output offset voltage by the expression

$$V_{OFF} = \frac{V_{OUTOFF}}{A_C}$$

Note: V_{OFF} is dependent upon V_{ICQ} although this dependence is usually quite weak and often not specified.
When differential input op amps are biased with symmetric supply voltages, it is generally assumed that the desired quiescent input voltage is 0V and the desired quiescent output voltage is 0V so V_{OFF} is the differential input voltage needed to make $V_{OUT}=0V$.

The input offset voltage is comprised of two parts, a systematic component and a random component

$$V_{OFF} = V_{OFFSYS} + V_{OSR}$$
Laboratory Support

\[V_{\text{OFF}} = V_{\text{OFFSYS}} + V_{\text{OSR}} \]

After fabrication there is no distinction made between \(V_{\text{OFFSYS}} \) and \(V_{\text{OSR}} \) and simply \(V_{\text{OFF}} \) is of concern.

\(V_{\text{OSR}} \) is determined entirely by random variations in component values from their ideal value and will only be seen in a simulation if deviations are intentionally introduced (Monte Carlo Analysis if often used for predicting \(V_{\text{OSR}} \)).

It is expected that \(V_{\text{OFFSYS}} \) should be small (much smaller than \(V_{\text{OSR}} \)) and it is the designer’s responsibility to make this small.
Laboratory Support

\[V_{\text{OFF}} = V_{\text{OFFSYS}} + V_{\text{OSR}} \]

It is not necessary to make \(V_{\text{OFFSYS}} = 0 \) although this can and is often done by making a minor tweak of matching critical parameters after the design of the op amp is almost complete.

\(V_{\text{OFFSYS}} \) can also be set to 0 by using a degree of freedom of the amplifier design variables but this is generally an unwise use of degrees of freedom (although some textbooks including Martin and Johns in Sec 5.1 do this!)
By symmetry, to force $V_{\text{OUT}} = 0$, it is necessary to have $V_{D3} = 0$

- Making $V_{D3} = 0$ sets $|V_{EB3}| = V_{DD} + V_{TP}$ and results in the use of one degree of freedom!
- Making V_{EB3} so large will severely limit the voltage swing at V_{OUT}
- This shows why it is not wise to use a degree of freedom to make the systematic offset voltage 0
Laboratory Support

Can sweep a voltage in simulator at gate of M_1 to make $V_{OUT}=0$

This is the systematic offset voltage

Can simply add the systematic offset voltage to input throughout rest of the design phase and then remove after design is complete or tweak at end of design to eliminate systematic offset.
Laboratory Support

Usually V_{OFF} will change if changes in any design variables are made so re-simulation will be needed to get the correct value of V_{OFF}

If V_{OFF} is not included, ac simulation of open-loop amplifier will usually not give desired results because small-signal models will be developed in simulator at incorrect operating point (often even in incorrect region of operation)

Alternative is to do ac simulations by embedding op amp into a FB configuration that will inherently compensate for offset voltage but issue of compensation must be addressed for amplifiers with two or more poles
Biased Folded Cascode Quarter Circuit

\[
\frac{V_{OUT}}{V_{IN}} \approx \frac{-g_{m1}}{sC_L + (g_{o1} + g_{o5}) \left(\frac{g_{o3}}{g_{m3}}\right)}
\]

\[
A_{V0} = \frac{g_{m1}}{(g_{o1} + g_{o5})} \frac{g_{m3}}{g_{o3}}
\]

\[
GB = \frac{g_{m1}}{C_L}
\]
Basic Amplifier Structure Comparisons

<table>
<thead>
<tr>
<th></th>
<th>Small Signal Parameter Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Source</td>
<td></td>
</tr>
<tr>
<td>A_{vo}</td>
<td>$A_{vo} = \frac{g_m}{g_o}$</td>
</tr>
<tr>
<td>GB</td>
<td>$GB = \frac{g_m}{C_L}$</td>
</tr>
<tr>
<td>Cascode</td>
<td></td>
</tr>
<tr>
<td>A_{vo}</td>
<td>$A_{vo} = \frac{g_{m1} g_{m3}}{g_{o1} g_{o3}}$</td>
</tr>
<tr>
<td>GB</td>
<td>$GB = \frac{g_{m1}}{C_L}$</td>
</tr>
<tr>
<td>Regulated Cascode</td>
<td></td>
</tr>
<tr>
<td>A_{vo}</td>
<td>$A_{vo} \approx \frac{g_{m1} g_{m3} A}{g_{o1} g_{o3}}$</td>
</tr>
<tr>
<td>GB</td>
<td>$GB = \frac{g_{m1}}{C_L}$</td>
</tr>
<tr>
<td>Folded Cascode</td>
<td></td>
</tr>
<tr>
<td>A_{vo}</td>
<td>$A_{vo} = \frac{g_{m1} g_{m3}}{(g_{o1} + g_{o5}) g_{o3}}$</td>
</tr>
<tr>
<td>GB</td>
<td>$GB = \frac{g_{m1}}{C_L}$</td>
</tr>
</tbody>
</table>
Basic Amplifier Structure Comparisons

Practical Parameter Domain

<table>
<thead>
<tr>
<th>Structure</th>
<th>A_{vo}</th>
<th>GB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Source</td>
<td>$A_{vo} = \left(\frac{2}{\lambda} \right) \left(\frac{1}{V_{EB}} \right)$</td>
<td>$GB = \left(\frac{2P}{V_{DD}C_L} \right) \left(\frac{1}{V_{EB}} \right)$</td>
</tr>
<tr>
<td>Cascode</td>
<td>$A_{vo} = \left(\frac{4}{\lambda_1\lambda_3} \right) \left(\frac{1}{V_{EB1}V_{EB3}} \right)$</td>
<td>$GB = \left(\frac{2P}{V_{DD}C_L} \right) \left(\frac{1}{V_{EB1}} \right)$</td>
</tr>
<tr>
<td>Regulated Cascode</td>
<td>$A_{vo} \approx \left(\frac{4}{\lambda_1\lambda_3} \right) \left(\frac{A}{V_{EB1}V_{EB3}} \right)$</td>
<td>$GB = \left(\frac{2P}{V_{DD}C_L} \right) \left(\frac{1-\theta}{V_{EB1}} \right)$</td>
</tr>
<tr>
<td>Folded Cascode</td>
<td>$A_{vo} \approx \left(\frac{4\theta}{(\theta\lambda_1 + \lambda_5)V_{EB1}V_{EB3}} \right)$</td>
<td>$GB = \left(\frac{2P}{V_{DD}C_L} \right) \left[\frac{\theta}{V_{EB1}} \right]$</td>
</tr>
</tbody>
</table>

θ = fraction of current of M_5 that is in M_1

Θ = pct power in A
Biased Cascode Amplifier

Quarter Circuit

Counterpart Circuit
Folded Cascode Amplifier

QUARTER CIRCUIT

Op Amp
These transistors pair-wise form a current source and one in each pair can be removed
Folded Cascode Op Amp

- Needs CMFB Circuit for V_{B4}
- Either single-ended or differential outputs
- Can connect counterpart as current mirror to eliminate CMFB
- Folding caused modest deterioration of A_{V0} and GB energy efficiency
- Modest improvement in output swing
Folded Cascode Op Amp
(Single-ended Output)

\[A_v(s) \approx -\frac{g_{mEQ}}{sC_L + g_{OEQ}} \]

\[A_v \approx \frac{g_{mEQ}}{g_{OEQ}} \]

\[GB \approx \frac{g_{mEQ}}{C_L} \]

\[g_{mEQ} = g_{m1} \]

\[g_{OEQ} \approx (g_{o1} + g_{o5}) \frac{g_{o3}}{g_{m3}} + (g_{o7}) \frac{g_{o9}}{g_{m9}} \]

\[A_v \approx \frac{g_{m1}}{(g_{o1} + g_{o5}) \frac{g_{o3}}{g_{m3}} + (g_{o7}) \frac{g_{o9}}{g_{m9}}} \]

\[GB = \frac{g_{m1}}{C_L} \]
Operational Amplifier Structure Comparison

<table>
<thead>
<tr>
<th>Reference Op Amp</th>
<th>$A_{vo} = \frac{1}{2} \frac{g_{m1}}{g_{o1} + g_{o3}}$</th>
<th>GB = $\frac{g_{m1}}{2C_L}$</th>
<th>SR = $\frac{I_T}{2C_L}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telescopic Cascode</td>
<td>$A_o = \frac{g_{m1}}{2} \frac{g_{o3}}{g_{m3}} + \frac{g_{o5}}{g_{o7}} \frac{g_{o5}}{g_{m5}}$</td>
<td>GB = $\frac{g_{m1}}{2C_L}$</td>
<td>SR = $\frac{I_T}{2C_L}$</td>
</tr>
<tr>
<td>Regulated Cascode</td>
<td>$A_o \approx \frac{g_{m1}}{2} \frac{g_{o3}}{g_{o1} g_{m3} A_1} + \frac{g_{o7}}{g_{o9} g_{m9} A_3}$</td>
<td>GB = $\frac{g_{m1}}{2C_L}$</td>
<td>SR = $\frac{I_T}{2C_L}$</td>
</tr>
<tr>
<td>Folded Cascode</td>
<td>$A_o = \frac{g_{m1}}{2} \frac{g_{o3}}{g_{m3}} + \frac{g_{o9}}{g_{m9}}$</td>
<td>GB = $\frac{g_{m1}}{2C_L}$</td>
<td>SR = $\frac{I_T}{2C_L}$</td>
</tr>
</tbody>
</table>
Operational Amplifier Structure Comparison

<table>
<thead>
<tr>
<th>Practical Parameter Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Op Amp</td>
</tr>
<tr>
<td>$A_{v0} = \frac{1}{\lambda_1 + \lambda_3} \left(\frac{1}{V_{EB1}} \right)$</td>
</tr>
<tr>
<td>$GB = \left(\frac{P}{2V_{DD}C_L} \right) \cdot \left[\frac{1}{V_{EB1}} \right]$</td>
</tr>
<tr>
<td>$SR = \frac{P}{2V_{DD}C_L}$</td>
</tr>
<tr>
<td>Telescopic Cascode</td>
</tr>
<tr>
<td>$A_{v0} = \frac{2}{V_{EB1}(\lambda_1\lambda_3 V_{EB3} + \lambda_5\lambda_7 V_{EB5})}$</td>
</tr>
<tr>
<td>$GB = \left(\frac{P}{2V_{DD}C_L} \right) \cdot \left[\frac{1}{V_{EB1}} \right]$</td>
</tr>
<tr>
<td>$SR = \frac{P}{2V_{DD}C_L}$</td>
</tr>
<tr>
<td>Regulated Cascode</td>
</tr>
<tr>
<td>$\Theta = \text{pct power in } A$</td>
</tr>
<tr>
<td>$A_{v0} \approx \frac{2}{V_{EB1} \left(\frac{\lambda_1\lambda_3 V_{EB3}}{A_1} + \frac{\lambda_5\lambda_7 V_{EB7}}{A_3} \right)}$</td>
</tr>
<tr>
<td>$GB = \left(\frac{P(1-\Theta)}{2V_{DD}C_L} \right) \cdot \left[\frac{1}{V_{EB1}} \right]$</td>
</tr>
<tr>
<td>$SR = \frac{P(1-\Theta)}{2V_{DD}C_L}$</td>
</tr>
<tr>
<td>Folded Cascode</td>
</tr>
<tr>
<td>$\Theta = \text{fraction of current of } M_5$ that is in M_1</td>
</tr>
<tr>
<td>$A_{v0} = \frac{2\Theta}{V_{EB1}((\theta\lambda_1 + \lambda_5)\lambda_3 V_{EB3} + (1-\theta)\lambda_9\lambda_7 V_{EB9})}$</td>
</tr>
<tr>
<td>$GB = \left(\frac{P}{2V_{DD}C_L} \right) \cdot \left[\frac{\theta}{V_{EB1}} \right]$</td>
</tr>
<tr>
<td>$SR = \frac{\theta P}{2V_{DD}C_L}$</td>
</tr>
</tbody>
</table>
Folded Cascode Op Amp
(Single-ended Output)

\[A_{V0} \approx \frac{g_{m1}}{(g_{o1} + g_{o5}) \frac{g_{o3}}{g_{m3}} + (g_{o7}) \frac{g_{o9}}{g_{m9}}} \]

\[GB = \frac{g_{m1}}{C_{L}} \]

How many degrees of freedom are there?
What is a practical design parameter set?

DOF? 9 DOF
\{I_T, W_1/L_1, W_5/L_5, W_3/L_3, W_9/L_9, W_7/L_7, V_{B1}, V_{B2}, V_{B3}\}

Practical Design Parameters
\{P, \theta, V_{EB1}, V_{EB3}, V_{EB5}, V_{EB7}, V_{EB9}, V_{B2}, V_{B3}\}
where \(\theta = I_T/(I_T + I_{T2}) \)
Some of the material we have been discussing appears in Chapter 3, some in Chapter 5, and some in Chapter 6 of the Martin and Johns text.

In particular, the telescopic and folded cascode structures are referred to as advanced op amps and appear in later chapters of the text.
Folded Gain-boosted Cascode Amplifier

\[A_0 \approx \frac{-g_{m1}}{(g_{o1}) \frac{g_{o3}}{A g_{m3}}} \]

\[GB = \frac{g_{m1}}{2C_L} \]

- with ideal current source bias
- modest improvement in output swing
Folded Gain-boosted Cascode Amplifier

\[\frac{V_{OUT}}{V_{IN}} \approx \frac{-g_{m1}}{sC_L + \left(\frac{g_{o1} + g_{o5}}{g_{m3}} \right) g_{o3}} \]

\[A_0 \approx \frac{-g_{m1}g_{m3}A}{(g_{o1} + g_{o5})g_{o3}} \]

\[GB = \frac{g_{m1}}{C_L} \]

modest improvement in output swing
Basic Amplifier Structure Comparisons

<table>
<thead>
<tr>
<th>Structure</th>
<th>Small Signal Parameter Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Source</td>
<td>$A_{vo} = \frac{g_m}{g_o}$, $GB = \frac{g_m}{C_L}$</td>
</tr>
<tr>
<td>Cascode</td>
<td>$A_{vo} = \frac{g_{m1} g_{m3}}{g_{o1} g_{o3}}$, $GB = \frac{g_{m1}}{C_L}$</td>
</tr>
<tr>
<td>Regulated Cascode</td>
<td>$A_{vo} \approx \frac{g_{m1} g_{m3}}{g_{o1} g_{o3}} A$, $GB = \frac{g_{m1}}{C_L}$</td>
</tr>
<tr>
<td>Folded Cascode</td>
<td>$A_{vo} = \frac{g_{m1} g_{m3}}{(g_{o1} + g_{o5}) g_{o3}}$, $GB = \frac{g_{m1}}{C_L}$</td>
</tr>
<tr>
<td>Folded Regulated Cascode</td>
<td>$A_{vo} = \frac{g_{m1} g_{m3}}{(g_{o1} + g_{o5}) g_{o3}} A$, $GB = \frac{g_{m1}}{C_L}$</td>
</tr>
</tbody>
</table>
Basic Amplifier Structure Comparisons

<table>
<thead>
<tr>
<th>Practical Parameter Domain</th>
<th>Common Source</th>
<th>Cascode</th>
<th>Regulated Cascode</th>
<th>Folded Cascode</th>
<th>Folded Regulated Cascode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Source</td>
<td>$A_{VO} = \left(\frac{2}{\lambda}\right)\left(\frac{1}{V_{EB}}\right)$</td>
<td>$A_{VO} = \left(\frac{4}{\lambda_1 \lambda_3}\right)\left(\frac{1}{V_{EB1} V_{EB3}}\right)$</td>
<td>$A_{VO} \approx \left(\frac{4}{\lambda_1 \lambda_3}\right)\left(\frac{A}{V_{EB1} V_{EB3}}\right)$</td>
<td>$A_{VO} \approx \left(\frac{4 \theta}{(\theta \lambda_1 + \lambda_5) \lambda_3 V_{EB1} V_{EB3}}\right)$</td>
<td>$A_{VO} \approx \left(\frac{A_4 \theta_2}{(\theta_2 \lambda_1 + \lambda_5) \lambda_3 V_{EB1} V_{EB3}}\right)$</td>
</tr>
<tr>
<td>Cascode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulated Cascode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Theta = \text{pct power in A}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Folded Cascode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Theta = \text{fraction of current of } M_5 \text{ that is in } M_1$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Folded Regulated Cascode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Theta_1 = \text{pct of total power in A}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Theta_2 = \text{fraction of current of } M_5 \text{ that is in } M_1$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain Bandwidth (GB)</td>
<td>$GB = \left(\frac{2P}{V_{DD}}\right)\left(\frac{1}{V_{EB}}\right)$</td>
<td>$GB = \left(\frac{2P}{V_{DD} C_1}\right)\left(\frac{1}{V_{EB1}}\right)$</td>
<td>$GB = \left(\frac{2P}{V_{DD} C_1}\right)\left(\frac{1 - \theta}{V_{EB1}}\right)$</td>
<td>$GB = \left(\frac{2P}{V_{DD} C_L}\right)\left(\frac{\theta}{V_{EB1}}\right)$</td>
<td>$GB = \left(\frac{2P}{V_{DD} C_L}\right)\left(\frac{\theta_2 (1 - \theta_1)}{V_{EB1}}\right)$</td>
</tr>
</tbody>
</table>
Folded Gain-boosted Telescopic Cascode Op Amp

\[A_o \approx \frac{-g_{m1}}{2} \frac{g_{o3}}{A_3 g_{m3}} + g_{o7} \frac{g_{o9}}{A_1 g_{m9}} \]

\[GB = \frac{g_{m1}}{2C_L} \]

- Needs CMFB Circuit for \(V_{B4} \)
- Either single-ended or differential outputs
- Can connect counterpart as current mirror to eliminate CMFB
- Folding caused modest deterioration in GB efficiency and gain
- Modest improvement in output swing
Operational Amplifier Structure Comparison

Small Signal Parameter Domain

<table>
<thead>
<tr>
<th>Reference Op Amp</th>
<th>$A_{vo} = \frac{1}{2} \frac{g_{m1}}{g_{o1} + g_{o3}}$</th>
<th>$GB = \frac{g_{m1}}{2C_L}$</th>
<th>$SR = \frac{I_T}{2C_L}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telescopic Cascode</td>
<td>$A_o = \frac{g_{m1}}{2g_{o1} \frac{g_{o3}}{g_{m3}} + g_{o7} \frac{g_{o5}}{g_{m5}}}$</td>
<td>$GB = \frac{g_{m1}}{2C_L}$</td>
<td>$SR = \frac{I_T}{2C_L}$</td>
</tr>
<tr>
<td>Regulated Cascode</td>
<td>$A_o \approx \frac{g_{m1}}{2g_{o1} \frac{g_{o3}}{g_{m3} A_1} + g_{o7} \frac{g_{o9}}{g_{m9} A_3}}$</td>
<td>$GB = \frac{g_{m1}}{2C_L}$</td>
<td>$SR = \frac{I_T}{2C_L}$</td>
</tr>
<tr>
<td>Folded Cascode</td>
<td>$A_o = \frac{g_{m1}}{2(g_{o1} + g_{o5}) \frac{g_{o3}}{g_{m3}} + g_{o7} \frac{g_{o9}}{g_{m9}}}$</td>
<td>$GB = \frac{g_{m1}}{2C_L}$</td>
<td>$SR = \frac{I_T}{2C_L}$</td>
</tr>
<tr>
<td>Folded Regulated Cascode</td>
<td>$A_o = \frac{g_{m1}}{2(g_{o1} + g_{o5}) \frac{g_{o3}}{g_{m3} A_3} + g_{o7} \frac{g_{o9}}{g_{m9} A_9}}$</td>
<td>$GB = \frac{g_{m1}}{2C_L}$</td>
<td>$SR = \frac{I_T}{2C_L}$</td>
</tr>
</tbody>
</table>
Summary of Folded Amplifier Performance

• + Modest improvement in output signal swing (from $5 \text{V}_{\text{DS SAT}}$ to $4\text{V}_{\text{DS SAT}}$)

• - Deterioration in A_{V0} (maybe 30% or more)

• - Deterioration in GB power efficiency (can be significant)

• - Minor increase in circuit size
End of Lecture 9