EE 330 Coverage - Fall 2007

Topics

Week 1
1. Electronic Systems Overview, Economic Opportunities
2. Yield and Cost of Semiconductor Products
3. Physical characteristics, soft faults

Week 2
4. Digital Systems - Basic Gates, Switch-Level MOS Models
5. Digital Systems - Complex Logic Gates, Pass Transistor Logic, Improved Switch-Level MOS Model
6. Parameter Extraction for Imp. Switch-Level Model, Propagation Delay in Logic, Placement, Stick Diagrams

Week 3
- Holiday
7. Technology Files, Design Rules, Layout
8. Fabrication Technology, Processing Steps

Week 4
9. Fabrication Technology, Processing Steps
10. Interconnects - resistive and capacitive
11. Backed Technology - Packaging, Bonding, Basic Semiconductor Processes

Week 5
13. Diode Operation, Diode Model (Diode Equation), simplified diode models
14. Diode Applications, Capacitor types and Models, MOSFET operation

Week 6
15. MOSFET Operation - square law model, short channel model, BSIM model (brief)
16. MOS Process Description - (n-channel, p-channel, capacitors, resistors)
17. Exam 1

Week 7
18. Small feature MOS processes, Bipolar Devices and operation
20. Bipolar Process Description - (vertical and lateral devices, JFET, diffused resistor, varactor, diode)

Week 8
21. MOS and Bipolar Device Comparisons, Q-point calculation
22. Transistors as Amplifiers (MOS and Bipolar)
23. Small-signal principles, ss models of 2-terminal devices, ss diode model

Week 9
24. Small-signal models of 3-terminal and 4-terminal devices, small signal MOSFET model
25. Small-signal BJT models, small signal circuit analysis, load lines, signal swings
26. MOSFET Model Extension (Bulk threshold), Comparison of MOS and Bipolar devices as amplifiers, Dependence of SS parameters on Q-point

Week 10
27. Basic Amplifier Structures-CS/CE, CD/CC, CG/CB
28. Basic Amplifier Structures-CS/CE, CD/CC, CG/CB
29. High Gain Amplifiers - Cascoding

Week 11
30. High Gain Amplifiers - Cascading, Cascading
31. Current Source Biasing, Darlington Configuration
32. Current Sources and Mirrors

Week 12
33. Differential Amplifiers (brief), Bipolar and MOS Mappings
35. Basic Gates, Characteristics of Logic Families, the Inverter Pair

Week 13
36. Analysis of Logic Circuits (at transistor level), VH, VL, VTRIP, Static I/V Char of CMOS Inverter, Inverter Device Sizing
37. Other CMOS Logic (ration logic), Propagation Delay in Static CMOS, Logic Gate Device Sizing, Reference Inverters
38. Propagation Delay in Multiple Levels of Logic, Overdrive

Week 14
39. Asymmetric Overdrive and Propagation Delay, Driving large capacitive load
40. Pad Drivers, Logical Effort, Elmore Delay, Ring Oscillators
41. Exam 2

Week 15
42. Complex Logic Gates, Pass Transistor Logic, Pseudo NMOS, Dynamic Logic (Domino and Zipper)
43. Sequential Logic - Latches, Flip Flops, Shift Registers, Array Logic, Sea of Gates and Gate Arrays
44. Memory Structures - Row/Column Decoders, Mem Cells (SRAM, DRAM, SROM, EEPROM)

High Frequency MOS Model (not enough time to cover)