Vector Spaces

A vector space is defined as a set V over a (scalar) field F, together with two binary operations, i.e., vector addition $(+)$ and scalar multiplication (\cdot), satisfying the following axioms:

- Commutativity of $+: u+v=v+u, \forall u, v, \in V$;
- Associativity of $+: u+(v+w)=(u+v)+w, \forall u, v, w \in V$;
- Identity element for $+: \exists 0 \in V: v+0=0+v=v, \forall v \in V$;
- Inverse element for $+: \forall v \in V \exists(-v) \in V: v+(-v)=(-v)+v=0$;
- Associativity of $: a(b v)=(a b) v, \forall a, b \in F, v \in V$;
- Distributivity of . w.r.t. vector $+: a(v+w)=a v+a w, \forall a \in F, v, w \in V$;
- Distributivity of . w.r.t. scalar +: $(a+b) v=a v+b v, \forall a, b \in F, v \in V$;
- Normalization: $1 v=v, \forall v \in V$.

Vector space examples (or not?)

- $\mathbb{R}^{n}, \mathbb{C}^{n}$;
- Real continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$
- The set of $m \times n$ matrices;
- The set of solutions $y(t)$ of the LTI ODE $d y(t) / d t+3 y(t)=0$;
- The set of points $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$ satisfying $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1$.
- The set of solutions $y(t)$ of the LTI ODE $d y(t) / d t+3 y^{\wedge} 2(t)=0$.

Subspaces

- A subspace of a vector space is a subset of vectors that itself forms a vector space.
- A necessary and sufficient condition for a subset of vectors to form a subspace is that this subset be closed with respect to vector addition and scalar multiplication.

Subspace examples (or not?)

- The range on any real $n \times m$ matrix, and the nullspace of any $m \times n$ matrix.
- The set of all linear combinations of a given set of vectors.
- The intersection of two subspaces.
- The union of two subspaces.
- The Minkowski (or direct) sum of two subspaces.

Linear (in)dependence, bases

- n vectors $v_{1}, v_{2}, \ldots, v_{n} \in V$ are (linearly) independent if

$$
c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{n} v_{n}=0 \quad \Leftrightarrow \quad c_{1}, c_{2}, \ldots, c_{n}=0 .
$$

- A space is n-dimensional if every set of more than n vectors is dependent, but there is some set of n vectors that are independent.
- Any set of n independent vectors is also called a basis for the space.
- if a space contains a set of n independent vectors for any $n \in \mathbb{N}$, then the space is infinite-dimensional.

Norms

Norms measure the "length" of a vector. A norm maps all vectors in a vector space to a non-negative scalar, with the following properties:

- Positivity: $\|x\|>0$ for $x \neq 0$.
- Homogeneity: $\|a x\|=|a|\|x\|, \quad \forall a \in \mathbb{R}, x \in V$.
- Triangle inequality: $\|x+y\| \leq\|x\|+\|y\|$.

Norm examples (or not?)

- Usual Euclidean norm in $\mathbb{R}^{n},\|x\|=\sqrt{x^{\prime} x}$; (where x^{\prime} is the conjugate transpose of x, i.e., as in Matlab).
- A matrix Q is Hermitian if $Q^{\prime}=Q$, and positive definite if $x^{\prime} Q x>0$ for $x \neq 0$. Then $\|x\|=\sqrt{x^{\prime} Q x}$ is a norm.
- For $x \in \mathbb{R}^{n},\|x\|_{1}=\sum_{1}^{n}\left|x_{i}\right|$, and $\|x\|_{\infty}=\max _{i}\left|x_{i}\right|$.
- For a continuous function $f:[0,1] \rightarrow \mathbb{R}$:
$\|f\|_{\infty}=\sup _{t \in[0,1]}|f(t)|$, and $\|f\|_{2}=\left(\int_{0}^{1}|f(t)|^{2} d t\right)^{1 / 2}$.

Inner product

- An inner product on a vector space V (with scalar field F) is a binary operation $\langle\cdot, \cdot\rangle: V \times V \rightarrow F$, with the following properties:
- Symmetry: $\langle x, y\rangle=\langle y, x\rangle^{\prime}, \forall x, y \in V$;
- Linearity: $\langle x, a y+b z\rangle=a\langle x, y\rangle+b\langle x, z\rangle$;
- Positivity: $\langle x, x\rangle>0$ for $x \neq 0$.
- The inner product gives a geometric structure to the space; e.g., it allows to reason about angles, and in particular, it defines orthogonality. Two vectors x and y are orthogonal if $\langle x, y\rangle=0$.
- Let $S \subseteq V$ be a subspace of V. The set of vectors orthogonal to all vectors in S is called S^{\perp}, the orthogonal complement of S, and is itself a subspace.

Inner product and norms

- An inner product induces a norm $\|x\|=\sqrt{\langle x, x\rangle}$.
- For example, define $\langle x, y\rangle=x^{\prime} Q y$ with Q Hermitian positive definite.
- For f, g continuous functions on $[0,1]$, let $\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t$
- Cauchy-Schwartz inequality: $|\langle x, y\rangle| \leq\|x\|\|y\|, \forall x, y \in V$, with equality only if $y=\alpha x$ for some $\alpha \in F$. (assuming that the norm is that induced by the inner product)

Proof

$$
\begin{gathered}
0 \leq\langle x+\alpha y, x+\alpha y\rangle=x^{\prime} x+\alpha^{\prime} y^{\prime} x+\alpha x^{\prime} y+|\alpha|^{2} y^{\prime} y \\
\text { Choose } \alpha=-x^{\prime} y /\langle y, y\rangle: \\
0 \leq\langle x, x\rangle\langle y, y\rangle-\langle x, y\rangle^{2} .
\end{gathered}
$$

The Projection Theorem

- Let M be a subspace of an inner product space V. Given some $y \in V$, consider the following minimization problem:

$$
\min _{m \in M}\|y-m\|
$$

where the norm is that induced by the inner product in V.

Projection theorem

The optimal solution \hat{m} is such that $(y-\hat{m}) \perp M$

Proof of the projection theorem

- By contradiction: assume that $y-\hat{m}$ is not orthogonal to M, i.e., there is some $m_{0},\left\|m_{0}\right\|=1$, such that $\left\langle y-\hat{m}, m_{0}\right\rangle=\delta \neq 0$.
- Then argue that $\left(\hat{m}+\delta^{\prime} m_{0}\right) \in M$ achieves a better solution than $\hat{m} . \operatorname{In}$ fact:

$$
\begin{aligned}
\left\|y-\hat{m}-\delta^{\prime} m_{0}\right\|^{2} & =\|y-\hat{m}\|^{2}-\delta^{\prime}\left\langle y-\hat{m}, m_{0}\right\rangle-\delta\left\langle m_{0}, y-\hat{m}\right\rangle+|\delta|^{2}\left\|m_{0}\right\|^{2} \\
& =\|y-\hat{m}\|^{2}-|\delta|^{2}-|\delta|^{2}+|\delta|^{2}\left\|m_{0}\right\|^{2}=\|y-\hat{m}\|^{2}-|\delta|^{2}
\end{aligned}
$$

Linear Systems of equations

- Consider the following system of (real or complex) linear equations:

$$
A x=y, \quad A \in \mathbb{R}^{m \times n}, x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m} .
$$

- Given A and y, is there a solution x ?

$$
\exists \text { a solution } x \quad \Leftrightarrow \quad y \in \mathcal{A} \quad \Leftrightarrow \quad \mathcal{R}([A \mid y])=\mathcal{R}(A) \text {. }
$$

- There are three cases:
- $n=m$: if $\operatorname{det}(A) \neq 0) \Rightarrow x=A^{-1} y$ is the unique solution.
- $m>n$: more equations than unknowns, the system is overconstrained. Happens in, e.g., estimation problems, where one tries to estimate a small number of parameters from a lot of experimental measurements. In such cases the problem is typically inconsistent, i.e., $y \notin \mathcal{R}(A)$. So one is interested in finding the solution that minimizes some error criterion.
- $m<n$: more unknown than equations, the system is overconstrained. Happens in, e.g., control problems, where there may be more than one way to complete a desired task. If there is a solution x_{p} (i.e., $A x_{p}=y$), then typically there are many other solutions of the form $x=x_{p}+x_{h}$, where $x_{h} \in \mathcal{N}(A)$ (i.e., $A x_{h}=0$). In this case it is desired to find the solution than minimizes some cost criterion.

