
Vector Spaces 

A vector space is defined as a set V over a (scalar) field F , together with two 
binary operations, i.e., vector addition (+) and scalar multiplication ( ), satisfying ·
the following axioms: 

Commutativity of +: u + v = v + u, ∀u, v , ∈ V ;


Associativity of +: u + (v + w) = (u + v) + w , ∀u, v , w ∈ V ;


Identity element for +: ∃0 ∈ V : v + 0 = 0 + v = v , ∀v ∈ V ;


Inverse element for +: ∀v ∈ V ∃(−v) ∈ V : v + (−v ) = (−v) + v = 0;


Associativity of : a(bv) = (ab)v , ∀a, b ∈ F , v ∈ V ;
·


Distributivity of w.r.t. vector +: a(v + w) = av + aw , ∀a ∈ F , v , w ∈ V ;
·


Distributivity of w.r.t. scalar +: (a + b)v = av + bv , ∀a, b ∈ F , v ∈ V ;
·


Normalization: 1v = v , ∀v ∈ V .
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Vector space examples (or not?)


Rn , Cn;


Real continuous functions f : R R
→ 

The set of m × n matrices;


The set of solutions y(t) of the LTI ODE dy(t)/dt + 3y(t) = 0;


The set of points (x1, x2, x3) ∈ R3 satisfying x1
2 + x2

2 + x2 = 1.
3 

The set of solutions y(t) of the LTI ODE dy(t)/dt + 3y^2(t) = 0. 
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Subspaces


A subspace of a vector space is a subset of vectors that itself forms a vector 
space. 

A necessary and sufficient condition for a subset of vectors to form a 
subspace is that this subset be closed with respect to vector addition and 
scalar multiplication. 
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Subspace examples (or not?)


The range on any real n × m matrix, and the nullspace of any m × n matrix. 

The set of all linear combinations of a given set of vectors. 

The intersection of two subspaces. 

The union of two subspaces. 

The Minkowski (or direct) sum of two subspaces. 
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Linear (in)dependence, bases 

n vectors v1, v2, . . . , vn ∈ V are (linearly) independent if


c1v1 + c2v2 + . . . + cnvn = 0 c1, c2, . . . , cn = 0.
⇔ 

A space is n-dimensional if every set of more than n vectors is dependent, but 
there is some set of n vectors that are independent. 

Any set of n independent vectors is also called a basis for the space. 

if a space contains a set of n independent vectors for any n ∈ N, then the 
space is infinite-dimensional. 
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Norms


Norms measure the ‘length” of a vector. A norm maps all vectors in a vector 
space to a non-negative scalar, with the following properties: 

Positivity: �x� > 0 for x = 0. �

Homogeneity: �ax� = |a| �x�, ∀a ∈ R, x ∈ V . 

Triangle inequality: �x + y� ≤ �x� + �y�. 
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Norm examples (or not?) 

Usual Euclidean norm in Rn , �x� = 
√
x �x ;


(where x � is the conjugate transpose of x, i.e., as in Matlab).


A matrix Q is Hermitian if Q � = Q, and positive definite if x �Qx > 0 for 
x = 0. Then � �x� = 

√
x �Qx is a norm. 

For x ∈ Rn , �x�1 = 1 
n |xi |, and �x�∞ = maxi |xi |. 

For a continuous function f : [0, 1] →�R� 
: 
1 

�1/2 
�f �∞ = supt∈[0,1] |f (t)|, and �f �2 = |f (t)|2dt .

0 
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Inner product


An inner product on a vector space V (with scalar field F ) is a binary

operation �·, ·� : V × V F , with the following properties:
→ 

Symmetry: �x , y� = �y , x��, ∀x , y ∈ V ;


Linearity: �x , ay + bz� = a�x , y � + b�x , z�;


Positivity: �x , x� > 0 for x = 0. �


The inner product gives a geometric structure to the space; e.g., it allows to 
reason about angles, and in particular, it defines orthogonality. Two vectors x 
and y are orthogonal if �x , y� = 0. 

Let S ⊆ V be a subspace of V . The set of vectors orthogonal to all vectors 
in S is called S⊥, the orthogonal complement of S , and is itself a subspace. 
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Inner product and norms


An inner product induces a norm �x� = �x , x�. 

For example, define �x , y� = x �Qy with Q Hermitian positive definite. � 1
For f , g continuous functions on [0, 1], let �f , g� = f (t)g(t) dt

0 

Cauchy-Schwartz inequality: |�x , y�| ≤ �x� �y�, ∀x , y ∈ V ,

with equality only if y = αx for some α ∈ F .

(assuming that the norm is that induced by the inner product)


Proof 
0 ≤ �x + αy , x + αy� = x �x + α�y �x + αx �y + |α|2 y �y 

Choose α = −x �y/�y , y� : 

.0 ≤ �x , x��y , y� − �x , y�2 
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The Projection Theorem


Let M be a subspace of an inner product space V . Given some y ∈ V , 
consider the following minimization problem: 

min 
m∈M 

�y − m�, 

where the norm is that induced by the inner product in V . 

Projection theorem 

The optimal solution m̂ is such that 
(y − m̂) ⊥ M 

y1 

y2 

M 

V y 

m̂ 
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Proof of the projection theorem


By contradiction: assume that y − m̂ is not orthogonal to M, i.e., there is 
some m0, �m0� = 1, such that �y − m̂, m0� = δ = 0. �

Then argue that ( ̂m + δ�m0) ∈ M achieves a better solution than m̂. In fact: 

�y − m̂− δ�m0�2 = �y − m̂�2 − δ��y − m̂, m0� − δ�m0, y − m̂� + |δ|2�m0�2 

= �y − m̂�2 − |δ|2 − |δ|2 + |δ|2�m0�2 = �y − m̂�2 − |δ|2 . 
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Linear Systems of equations 

Consider the following system of (real or complex) linear equations: 

Ax = y , A ∈ Rm×n , x ∈ Rn , y ∈ Rm . 

Given A and y , is there a solution x? 

∃ a solution x ⇔ y ∈ A ⇔ R([A|y ]) = R(A). 

There are three cases: 
n = m: if det(A) = 0) � ⇒ x = A−1y is the unique solution.

m > n: more equations than unknowns, the system is overconstrained. Happens in,

e.g., estimation problems, where one tries to estimate a small number of parameters

from a lot of experimental measurements. In such cases the problem is typically

inconsistent, i.e., y /
∈ R(A). So one is interested in finding the solution that 
minimizes some error criterion. 
m < n: more unknown than equations, the system is overconstrained. Happens in, 
e.g., control problems, where there may be more than one way to complete a desired 
task. If there is a solution xp (i.e., Axp = y), then typically there are many other 
solutions of the form x = xp + xh, where xh ∈ N (A) (i.e., Axh = 0). In this case it is 
desired to find the solution than minimizes some cost criterion. 
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