## Least Squares Estimation

- Consider an system of $m$ equations in $n$ unknown, with $m>n$, of the form

$$
y=A x .
$$

- Assume that the system is inconsistent: there are more equations than unknowns, and these equations are non linear combinations of one another.
- In these conditions, there is no $x$ such that $y-A x=0$. However, one can write $e=y-A x$, and find $x$ that minimizes $\|e\|$.
- In particular, the problem

$$
\min _{x}\|e\|_{2}=\min _{x}\|y-A x\|_{2}
$$

is a least squares problem. The optimal $x$ is the least squares estimate.

## Computing the Least-Square Estimate

- The set $M:=\left\{z \in \mathbb{R}^{m}: z=A x, x \in \mathbb{R}^{n}\right\}$ is a subspace of $\mathbb{R}^{m}$, called the range of $A, \mathcal{R}(A)$, i.e., the set of all vectors that can be obtained by linear combinations of the columns of $A$.
- Recall the projection theorem. Now we are looking for the element of $M$ that is "closest" to $y$, in terms of 2 -norm. We know the solution is such that

$$
e=(y-A \hat{x}) \perp \mathcal{R}(A) .
$$

- In particular, if $a_{i}$ is the $i$-th column of $A$, it is also the case that

$$
\begin{aligned}
(y-A \hat{x}) \perp \mathcal{R}(A) \quad \Leftrightarrow & a_{i}^{\prime}(y-A \hat{x})=0, \quad i=1, \ldots, n \\
& A^{\prime}(y-A \hat{x})=0 \\
& A^{\prime} A \hat{x}=A^{\prime} y
\end{aligned}
$$

- $A^{\prime} A$ is a $n \times n$ matrix; is it invertible? It if were, then at this point it is easy to recover the least-square solution as

$$
\hat{x}=\left(A^{\prime} A\right)^{-1} A^{\prime} y .
$$

## The Gram product

- Let us take a more abstract look at this problem, e.g., to address the case that the data vector $y$ is infinite-dimensional.
- Given an array of $n_{A}$ vectors $A=\left[a_{1}|\ldots| a_{n_{A}}\right]$, and an array of $n_{B}$ vectors $B=\left[b_{1}|\ldots| b_{n_{B}}\right]$, both from an inner vector space $V$, define the Gram Product $\prec A, B \succ$ as a $n_{A} \times n_{B}$ matrix such that its $(i, j)$ entry is $\left\langle a_{i}, b_{j}\right\rangle$.
- For the usual Euclidean inner product in an m-dimensional space,

$$
\prec A, B \succ=A^{\prime} B .
$$

- Symmetry and linearity of the inner product imply symmetry and linearity of the Gram product.


## The Least Squares Estimation Problem

- Consider again the problem of computing

$$
\min _{x \in \mathbb{R}^{n}}\|\underbrace{y-A x}_{e}\|=\min _{\hat{y} \in \mathcal{R}(A)}\|y-\hat{y}\| .
$$

- $y$ can be an infinite-dimensional vector-as long as $n$ is finite.
- We assume that the columns of $A=\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ are independent.


## Lemma (Gram matrix)

The columns of a matrix $A$ are independent $\Leftrightarrow \prec A, A \succ$ is invertible.
Proof- If the columns are dependent, then there is $\eta \neq 0$ such that $A \eta=\sum_{j} a_{j} \eta_{j}=0$. But then $\sum_{j}\left\langle a_{i}, a_{j}\right\rangle \eta j=0$ by the linearity of inner product. That is, $\prec A, A \succ \eta=0$, and hence $\prec A, A \succ$ is not invertible. Conversely, if $\prec A, A \succ$ is not invertible, then $\prec A, A \succ \eta=0$ for some $\eta \neq 0$. In other words $\eta^{\prime} \prec A, A \succ \eta=0$, and hence $A \eta=0$.

## The Projection theorem and least squares estimation 1

- $y$ has a unique decomposition $y=y_{1}+y_{2}$, where $y_{1} \in \mathcal{R}(A)$, and $y_{2} \in \mathcal{R}^{\perp}(A)$.
- To find this decomposition, let $y_{1}=A \alpha$, for some $\alpha \in \mathbb{R}^{n}$. Then, ensure that $y_{2}=y-y_{1} \in \mathcal{R}^{\perp}(A)$. For this to be true,

$$
\left\langle a_{i}, y-A \alpha\right\rangle=0, \quad i=1, \ldots, n,
$$

i.e.,

$$
\prec A, y-A \alpha \succ=0 .
$$

- Rearranging, we get

$$
\prec A, A \succ \alpha=\prec A, y \succ
$$

- if the columns of $A$ are independent,

$$
\alpha=\prec A, A \succ^{-1} \prec A, y \succ
$$

## The Projection theorem and least squares estimation

- Decompose $e=e_{1}+e_{2}$ similarly $\left(e_{1} \in \mathcal{R}(A)\right.$, and $\left.e_{2} \in \mathcal{R}^{\perp}(A)\right)$.
- Note $\|e\|^{2}=\left\|e_{1}\right\|^{2}+\left\|e_{2}\right\|^{2}$.
- Rewrite $e=y-A x$ as

$$
e_{1}+e_{2}=y_{1}+y_{2}-A x,
$$

i.e.,

$$
e_{2}-y_{2}=y_{1}-e_{1}-A x .
$$

- Each side must be 0 , since they are on orthogonal subspaces!
- $e_{2}=y_{2}$-can't do anything about it.
- $e_{1}=y_{1}-A x=A(\alpha-x)$ —minimize by choosing $x=\alpha$. In other words

$$
\hat{x}=\prec A, A \succ^{-1} \prec A, y \succ .
$$

## Examples

- If $y, e \in \mathbb{R}^{m}$, and it is desired to minimize $\|e\|^{2}=e^{\prime} e=\sum_{i=1}^{m}\left|e_{i}\right|^{2}$, then

$$
\hat{x}=\left(A^{\prime} A\right)^{-1} A^{\prime} y
$$

(If the columns of $A$ are mutually orthogonal, $A^{\prime} A$ is diagonal, and inversion is easy)

- if $y, e \in \mathbb{R}^{m}$, and it is desired to minimize $e^{\prime} S e$, where $S$ is a Hermitian, positive-definite matrix, then

$$
\hat{x}=\left(A^{\prime} S A\right)^{-1} A^{\prime} S y .
$$

- Note that if $S$ is diagonal, then $e^{\prime} S e=\sum_{i=1}^{m} s_{i i}\left|e_{i}\right|^{2}$, i.e., we are minimizing a weighted least square criterion. A large $s_{i i}$ penalizes the $i$-th component of the error more relative to the others.
- In a general stochastic setting, the weight matrix $S$ should be related to the noise covariance, i.e.,

$$
S=\left(E\left[e e^{\prime}\right]\right)^{-1}
$$

